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Summary

The First step of autonomous car is based on visual scene understanding of the sur-
rounding environment. This visual understanding entails identification and localization
of surrounding objects. Developing a semantic image segmentation architecture, for seg-
menting the entire view into regions and assigning a semantic label to these regions, lies
at the heart of this problem. This thesis proposes an effective and efficient semantic
image segmentation model for autonomous driving.

In the last several years, semantic image segmentation likes other computer vision tasks
as object detection and image classification, has seen considerable advancements due
to the employment of deep learning architectures, especially convolutional neural net-
works CNN. Training such architectures to obtain a high level of accuracy requires
a very complex model. Being the autonomous driving a critical real-time application,
computationally efficient models are needed. Also, edge devices as mobile phones have
a low capacity of computational power. Also, this requires a specific and efficient deep
neural networks. Although there are many ways to design deep neural networks and the
availability of efficient training hardware, still designing a high accuracy and computa-
tionally efficient models is very challenging.

This thesis focuses on providing efficient deep neural networks for semantic image seg-
mentation at two concurrent levels.

Computationally Efficient Model: we designed lightweight neural networks for se-
mantic segmentation by following up the encoder-decoder structure, employing lightweight
efficient backbone networks, and designing lightweight efficient decoder module.

High Accuracy Model: while considering the computational cost of the proposed
models in our mind, we also consider the performance efficiency in terms of accuracy
by employing long and short residual connections and designing efficient module called
Deeper Atrous Spatial Pyramid Pooling (DASPP) to capture the extracted features by
the encoder section at multi-level context.

We evaluated our model on the standard dataset Cityscapes. Also, in our evaluation

procedure, we evaluated our model on severe weather condition on the standard dataset



Foggy Cityscapes. A three variant of semantic segmentations model are proposed to
provide multiple trade-offs between accuracy and computational efficiency. Our model
LiteSeg-Mobilenet can achieve 161 frame per second (FPS) with mean intersection over
union (mIOU) of 67.81% while the previous state-of-the-art ESPNet on the same hard-

ware can achieve 144 FPS with mIOU of 60.3% on the standard Cityscapes test set.

Key words: Semantic Image Segmentation, Convolutional Neural Network, Fully

Convolutional Network, Encoder-Decoder Architecture
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