

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Bio-HPP versus Co-Cr, CAD/CAM designed Telescopic retained Removable Partial Dentures (In vitro study)

Thesis

Submitted to Oral and Maxillofacial Prosthodontics Department,
Faculty of Dentistry - Ain Shams University
in Partial Fulfillment of the Requirements for Ph.D in
Oral and Maxillofacial Prosthodontics

By

Mohammed Abdel Rahman M. Muwafi

B.D.S., Ain Shams University, (2011) M.Sc. Ain Shams University, (2017)

Faculty of Dentistry
Ain Shams University
2020

SUPERVISORS

Prof. Dr. Mahmoud Hassan El-Afandy

Professor of Oral & Maxillofacial Prosthodontics
Faculty of Dentistry
Ain-Shams University

Dr. Yasmine Galal El-Din Thabet

Associate Professor of Oral & Maxillofacial Prosthodontics
Faculty of Dentistry
Ain-Shams University

بِنْ لِلَّهِ ٱلدَّهُ وَٱلدَّهُ وَٱلدَّحِيهِ

ضابة الله الخطيئ

سورة طه - الآية (١١٤)

Acknowledgement

First thanks are for Allah, the Most Gracious and the Most Merciful, all praises to Allah for the strengths and his blessings in completing this thesis.

I would like to express my deepest thanks, sincere respect and highest appreciation to **Professor**, **Mahmoud Hassan Al-Afandy**, Professor of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, Ain Shams University, whom the door to his office was always open for me whenever I ran into a trouble spot. He consistently allowed this work to flow and steered me in the right direction whenever he thought I needed it. His valuable experience and honorable supervision will always be remembered with a lot of gratitude.

I would like to beautifully thank **Dr. Yasmine Galal El- Din Thabet**, Associate Professor of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, Ain-Shams University, for her highly appreciated guidance and

endless support not only throughout this thesis but also during my life. I cannot be prouder for being her student.

I would also like to extend my sincere gratitude to Professor Dr. Marwa Ezzat Sabet, who always encouraged me to be better and and progress throughout my career.

Also, I would like to express my deepest gratitude to Associate Professor Dr. Shayma Fouda, for her endless support, care, and friendship during my entire career.

My deepest thanks and appreciation to all my professors and colleagues in the Oral and Maxillofacial Prosthodontics department for supporting and guiding me.

LIST OF CONTENTS

	Page
LIST OF ABBREVIATIONS	П
LIST OF FIGURES	IV
LIST OF TABLES	X
INTRODUCTION	1
REVIEW OF LITERATURE	3
AIM OF THE STUDY	38
MATERIALS & METHODS	39
RESULTS	62
DISCUSSION	68
SUMMARY	74
CONCLUSIONS	75
REFERENCES	76
ARABIC SUMMARY	1

LIST OF FIGURES

Figure no.	Title	Page
1	Maxillary Educational cast	41
2	Sectioned Rubber Base Index	41
3	Surveying and Axial Reduction	41
4	Novage drill press servayor machine	41
5	Confirmation of reduction of both Canines and Premolars	41
6	Model inside Benchtop 3Shape Scanner	44
7	Virtual Model with Removable Dies	44
8	Removable Dies with Apical Stop	44
9	Model on Meshmixer after creation of soft tissue spaces and sites for strain gauge sensors	44
10	Nesting of the Model and Dies for Printing	46
11	Creation of Model Supports	46
12	Model with base and supports	46
13	Printed Model	46
14	Gingival Mask Injection under Clear Vacuum formed stent.	46
15	Printed Models with Soft Tissue Simulating Material occlusal view	47
16	Printed Models with Soft Tissue Simulating Material side view	47
17	Arranging Dies inside Scanner Holder	47
18	Scanning Module of 3Shape for Dies Scans	47
19	Finish Line Detection after Model and Die Scanning	47
20	Exocad Software, Primary Telescopes Design, Generation of the Minimum Thickness, and determination of the common Path of Insertion	49
21	Adjusting Tooth Positions and Path of Insertion	49

Figure no.	Title	Page
22	Primary Telescopes features, Modified Murburg Design	49
23	Final Design and Finish Line Adjustments	49
24	Final Step of Primary Telescopes Design	49
25	Fully Sintered Co-Cr Blank, 21mm	50
26	Fitting Surface of Co-Cr Telescopic crowns	50
27	External Surface Primary Telescopic Crowns	50
28	Trial Fitting of the Primary Telescopic Crowns	50
29	Sandblasting of the Fitting Surface of the Co-Cr Primary Telescopes	51
30	Sandblasting of the Fitting Surface of the Bio-HPP Primary Telescopes	51
31	Cementation of the Primary Crowns	51
32	Cemented Primary Crowns	51
33	Virtual Model of the RPD Design	53
34	Path of Insertion Determination	53
35	Undercuts Block-Out	53
36	Artificial Teeth Placement	53
37	Adjusting Teeth Positions	53
38	Reduction of the labial surface for Estheic Veneering	53
39	Finished Secondary Crowns	54
40	RPD Design, Outline Denture Base	54
41	Denture Base Design	54
42	Denture Base Orientation	54
43	Outlining Major Connector Borders	54
44	Generated Textured Major Connector	54
45	No Extra-Coronal Clasp was selected	55
46	External Finish lines	55

Figure no.	Title	Page
47	External finish Lines	55
48	Internal finish lines.	55
49	Milled Co-Cr RPD Framework, Fitting Surface	56
50	Milled Bio-HPP RPD Framework, Fitting Surface	56
51	Milled Co-Cr RPD Framework, External Surface	56
52	Milled Bio-HPP RPD Framework, External Surface	56
53	Scanning of the RPD Frameworks for Accuracy Test	57
54	Introduction of the Framework Scan and Design STL	57
55	Initial Alignment of the STL Files	57
56	Best Fit Matching of the STL Files	57
57	3D-Comparison of the Metal Scan and Original Design	57
58	3D-Comparison of the Bio-HPP Scan and Original Design	58
59	Installation of Strain Gauge Sensors	59
60	Bilateral Load Application	59
61	Universal Testing Machine	59
62	Universal Testing Machine Control Unit	59
63	PCD 30A Software	60
64	Acrylic Resin Base for Chewing Simulator	61
65	Chewing Simulator with Thermocycle	61
66	T-Shaped Load Applicator	61
67	Chewing Simulation on Bio-HPP RPD	61
68	Chewing Simulation on Milled Co-Cr RPD	61
69	3D-Comparison of the STL of Dies before and after Chewing Simulation.	62
70	Showing means of surface deviations of both groups	64
71	Showing means of both groups	65
72	Means of the strain levels at different sites	67

Figure no.	Title	Page
73	Means of the strain levels at different sites	69

LIST OF TABLES

Table No.	Title	Page
I	Mean, Standard Deviation, Standard Error of Mean and P Value of Student t-test	64
II	Mean, Standard Deviation, Standard Error of Mean and P Value of Student t-test	65
III	Strain gauge sites, Groups, Sample, Mean, Standard deviation, Standard error of the mean and P value for independent t-test	66
IV	Strain gauge sites, Groups, Sample, Mean, Standard deviation, Standard error of the mean and P value for independent t-test	68

INTRODUCTION

During the past years, economic growth, coupled with a strong desire among people to maintain a healthy lifestyle, have impacted all fields of medicine. Recently, patients tend to be less tolerant with the idea of teeth extraction, which was thought to render the science of removable prosthodontics obsolete. However, the advances in healthcare services gave the people a more extended lifespan, which lead to an increase in the practice of geriatric dentistry, including removable prosthesis. Unfortunately, such improvements have not yet influenced some of the less fortunate developing countries.

Kennedy's class III is the most frequently encountered pattern of partial edentulism in the upper arch. Since the fixed prosthodontic service was not free of charge, the removable partial denture (RPD) continues to be an essential prosthetic consideration in many oral reconstructions.

The main function of the RPDs is to preserve the integrity of the dental arch and to restore the lost function, thus they must not produce unfavorable forces on the abutments or the supporting structures.

Accuracy and adaptation of a prosthesis play an important role in preventing undue forces on the abutments. A properly adapted and accurately manufactured partial denture decreases the harmful forces on the abutments and maintains their health. Multiple steps in the conventional fabrication technique affected the accuracy and adaptation of RPDs, so Computer Assisted Design and Computer Assisted Manufacturing (CAD/CAM) technology was used.

Unlike the conventional fabrication methods, computer aided manufacturing has the advantages of omitting multiple error introducing steps such as impressions, waxing and casting. This is assumed to reduce the sources