

Neutronic Parameters Evaluation for an Accelerator Driven Subcritical Reactor Designed for Nuclear Energy Generation and Nuclear Waste Transmutation

A thesis submitted as a partial fulfillment of the requirements for the degree of Master of scince in Physics

to

Physics Department, Faculty of Sceince, Ain Shams University

By

Hedarh Mohammed Obady Al Ssalahy

Bachelor In (Physics/Mathematics), Aden University, Yemen

Supervisors:

Prof. Dr. Samir Yousha El-Khamisy

Professor of Nuclear Physics, Physics Department, Faculty of Science, Ain Shams University, Cairo Prof. Dr. Esmat Hanem Ali Amin

Professor of Reactor Safety Engineering, Nuclear and Radiological Regulatory Authority

APPROVAL SHEET

Name: Hedarh Mohammed Obady Al Ssalahy

Title: Neutronic Parameters Evaluation for an Accelerator Driven Subcritical Reactor Designed for Nuclear Energy Generation and Nuclear Waste Transmutation

Supervisors:	<u>Signature</u>
Prof. Dr. Samir Yousha El-Khamisy	
Professor of Nuclear Physics, Physics Department,	•••••
Faculty of Science, Ain Shams University, Cairo	
Prof. Dr. Esmat Hanem Ali Amin	
Professor of Reactor Safety Engineering,	•••••
Nuclear and Radiological Regulatory Authority	

Name: Hedarh Mohammed Obady Al Ssalahy

Degree: Master

Department: : Physics- Nuclear Physics Group

Faculty: Science

University: Ain Shams

Graduation Date: 2007, Aden University, Yemen

Registration: 11/4/2016

Grant Date:

To my father and my mother Words cannot express how grateful I am to my mother and father. My Parents, whose has been a source of sympathy, and for their continuous encouragement and inspiration to me.

To my brothers and sisters who supported and encouraging me during the years of study.

To my wife who being a real companion and stood long by my side until my success saw the light.

To my beloved daughters Shahad and Raghad, the smiles and flowers that were born in my life.

To all who helped me and wished me good luck.

ACKNOWLEDGEMENT

First, I thank **Allah**, the most Beneficent, the most Merciful, who gave me the ability to do this work and I am asking His support for further success in my scientific work.

This work is dedicated to my loving family, for 9 would not be who 9 am today without their love, friendship and everlasting support. 9 am forever thankful.

I would like to express my deep gratitude to **Prof. Samir El-Khamisy** for his supervision, guidance and continuous support to me, during the study period and his handling upscale and humble, which had a major impact in the completion of this work.

I would like to express my deep gratitude to **Prof. Esmat Amin** for her supervision, guidance and continuous support to me, during the study period, great efforts, fruitful discussions, and for his help to overcome all the difficulties and obstacles that I faced during the work. The valuable discussions and continuous assistance which were so willingly given by **supervisors** during the course of this work will never be forgotten.

Hedarh Mohammed Obady Al Ssalahy 2019

Contents

ACKNOWLEDGEMENT	i
Contents	ii
List of Tables	vi
List of Figures	vii
Abstract	X
Summary	xi
Chapter 1. Nuclear Energy and Nuclear Waste	1
1.1 Nuclear energy present overview	1
1.2 Nuclear Waste	4
1.2.1 Classification of radioactive wastes	4
1.2.2 Nuclear Waste Composition	4
1.3 Partitioning and Transmutation	
1.3.1 Argument for Partitioning and Transmutation	
1.3.2 Principle of Transmutation	
1.3.3 Implementation Tools for Transmutation:	9
Chapter 2: Accelerator-Driven Subcritical Reactors	11
2.1 Spallation reactions	11
2.2 ADS Background	12
2.2.1 ADS Description	
2.2.2 Historical background of ADS	
2.2.3 Experimental ADS	16
2.3 Literature Survey	18
2.4 The Aim and Scope of the study:	21
Chapter 3: Theoretical Fundamentals of ADS Efficience	y23

3.1 The neutron transport equation	23
3.2 Definition of the effective multiplication factor(Keff	5) 25
3.3 Definition of the subcritical multiplication factor (Ks)	26
3.4 Relation between Ks and Keff in subcritical system	28
3.5 Neutron source efficiency	30
3.6 Proton source efficiency	31
3.7 The total fission power	32
3.8 Energy gain	34
Chapter 4: Calculation codes and Methodologies	35
4.1 Neutronic Calculations	35
4.2 Nuclear data	37
4.4 Monte Carlo code	40 41
4.4.3 MCNPX	46 46
Chapter 5: Description and Design of Model	49
5.1 Historical of MYRRHA reactor	49
5.2 Description of the MYRRHA-FASTEF Subcritical reactor core model	51 51
5.2.3 Fuel	
5.3 Design of the MYRRHA-FASTEF Sub-critical React Core Model	or
COLUMNIA 1110 WOLD 11110 WILLIAM 11110 WILLI	50

5.3.1 Design of the BOL Core Model	58
5.3.2 Design of the equilibrium core model	60
Chapter 6: Results and Discussions	63
6.1 Investigation of the spallation target	63
6.1.1 The Target separately	
6.1.2 Target inside the MYRRHA- FAETEF Subcritical	:
core	69
6.2 Calculation for MYRRHA-FASTEF subcritical BOL	,
core	71
6.2.1 Evalution of <i>Keff</i>	71
6.2.2 Evalution of <i>Ksrc</i>	71
6.2.3 BOL Core Axial Power Distribution	73
6.2.4 BOL core Radial power Distribution	73
6.3 Calculation for The MYRRHA-FASTEF sub-	
critical equilibrium core	75
6.3.1 Time-evolution of the number of FAs and core po	wer
	75
6.3.2 Evalution of K _{eff}	76
6.3.3 Evalution of Ksrc	77
6.3.4 Equilibrium Core Axial Power Distribution	78
6.3.5 The MYRRHA-FASTEF subcritical equilibrium	
Radial power Distribution	80
Chapter 7: Conclusion	82
References:	84
APPENDIXS	98
Appendix A: MCNPX Input File	98
APPENDIX B: MATERIAL COMPOSITION	
APPENDIX C: Axial zones of the Core and its functions	

Published Paper	129
الملخص العربي	1 -

List of Tables

Table (1-1): Radioactive characteristics of isotopes in spent nuclear fuel	5
Table (5-1): MYRRHA-FASTEF design parameters.	63
Table (6-1): Comparison between the values of present calculations and reference calculations for MYRRHA-FASTEF reactor core (58FA-81 MW subcritical BOL core).	79
Table(6-2): \mathbf{k}_s and $\boldsymbol{\varphi}^*$ for different target material.	81
Table(6-3): Effective multiplication factor versus time.	82
Table(6-4): subcritical multiplication factor versus time-burnup.	83
Table (B-1): LBE composition (at 270, 360, and 410 °C)	138
Table (B-2): T91 FMS composition (at 20 °C)	138
Table (B-3): 15-15Ti SS composition (at 20 °C)	139
Table (B-4): 316L SS composition (at 20 °C)	139
Table (B-5): AlMgSi1 composition (at 20 °C)	140
Table (B-6): B4C composition (at 20 °C)	140
Table (B-7): YZrO composition (at 20 °C)	140
Table (B-8): 4He atom density (at 1 and 5 bar)	140

List of Figures

Figure (1-1): Nuclear share of electricity generation.	2
Figure (1-2): Composition of spent nuclear fuel	5
Figure (1-3): Ingestion radiotoxicity of 1 ton of spent nuclear fuel	8
Figure (1-4).: The ratio of the fission and absorption cross section in a fast and in a thermal neutron spectrum for actinides isotopes	9
Figure (2-1): Spallation versus fission also the different stages of the spallation process	13
Figure (2-2): Schematic of the accelerator-driven subcritical reactor, taken from	14
Figure (2-3): The nuclear cascade that drives ADS as opposed to the self-sustained chain reaction causing critical fission reactor.	15
Figure (5-1): Section view of the MYRRHA FASTEF subcritical ADS reactor.	58
Figure (5-2): The axial and radial (at mid-plane) schematics of a fuel pin	59
Figure (5-3): The axial and radial (at mid-plane) schematics of the MYRRHA FASTEF fuel assembly.	60
Figure (5-4): MYRRHA-FASTEF)58FA-81 MW) subcritical core at BOL Layout.	62

Figure (5-5): Mixed shuffling for the 94 MW sub-critical equilibrium core (72 FAs divided into 6 groups of 12 FA	64
Figure (5-6): MYRRHA-FASTEF (72FA-94 MW) sub- critical equilibrium core layout[103]	65
Figure (5-7): Horizontal view of MCNPX model of MYRRHA-FASTEF at BOL core configuration	66
Figure (5-8): Vertical view of MCNPX model of MYRRHA-FASTEF at BOL core configuration.	67
Figure (5-9): Horizontal view of MCNPX model of MYRRHA-FASTEF at equilibrium core configuration	69
Figure (5-10): Vertical view of MCNPX model of MYRRHA-FASTEF at equilibrium core configuration.	70
Figure (6-1): Horizontal and vertical view of the test model with MCNPX.	73
Figure (6-2): Dependence of the neutron yield on the incident proton energy compared with previous data refrance(107)	74
Figure (6-3): Dependence of the neutron yield per proton on the target radius for U, LBE, Pb, Bi, W, and Cu targets.	76
Figure (6-4): Neutron yield per proton as a function of Proton beam energy for U, LBE, Pb, Bi, W, and Cu targets.	77
Figure (6-5): Comparison between calculated neutron spectra for U, LBE, Pb, Bi, W, and Cu targets	78

Figure (6-6): Axial distribution of Linear power in the hot fuel pin at 0 (BOL) MCNPX.	84
Figure (6-7:) Axial distribution of Linear power in the hot fuel pin at 90day MCNPX	85
Figure (6-8): Assembly relative power at BOL	86
Figure (6-9): Assembly relative power at 90 day	86
Figure (6-10): . Time-evolution of the number of FAs and core power from BOL towards the equilibrium	87
Figure (6-11): k_{eff} values from BOL towards the equilibrium (MCNPX).	88
Figure (6-12): k_{src} values from BOL towards the equilibrium (MCNPX)	89
Figure (6-13): Axial distribution of linear power in the hot fuel pin at 0 (BOL) and 90 days ($z = 0$ is the core midplane; MCNPX).	90
Figure (6-14): Axial distribution of linear power in the hot fuel pin after 90days (MCNPX)	91
Figure (6-15): Power distribution at BOL (t=0 EFPD)	92
Figure (6-16): Power distribution at EOC (t=90 EFPD)	93
Figure(A-1): MYRRHA-FASTEF subassemblies models	14

ABSTRACT

Abstract

In the present study, the FAst Spectrum Transmutation Experimental Facility (FASTEF) core proposed for the MYRRHA reactor in Belgium is considered and modeled using Monte Carlo N-Particle Transport Code.

The effect of changing the type of material and radius of the cylindrical target source as well as the proton beam energy on the final neutron production and the subcritical system evaluated. Subcritical multiplication are models of the investigated reactor have been numerically investigated as well. six target materials; uranium (U), lead-bismuth eutectic (LBE), tungsten (W), lead (Pb), bismuth (Bi), and copper (Cu) are used with varying target radii from 3.5 to 20 cm. The beam energy is varied from 0.2 to 2.0GeV. The present investigation is based on the numerical calculations of the subcritical multiplication factor and the external source efficiency using Monte Carlo MCNPX 2.6.0 code. The obtained results revealed that the favorable target material, radius, and beam energy can be precisely determined.