

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The association between insulin resistance and unexplained recurrent miscarriage

AThesis

Submitted for partial fulfillment of Master degree in Obstetrics & Gynecology

By

Samar El-Sayed Ali El-Emam

M.B.B.Ch.,

Faculty of Medicine, Ain Shams University (2011)
Resident Obstetrician and Gynecologist at Al-Galaa Teaching Hospital in
Cairo

Under Supervision of

Prof. Hassan Awwad Bayoumy

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Prof.Wessam Magdy AbuelGhar

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

DR .Gihan ElSayed ElHawwary

Assistant professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful, Who gave me the strength to accomplish this work.

My deepest gratitude to my supervisor, **Prof. Dr. Hassan Awwad Bayoumy,** Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Prof. Dr. Wessam Magdy AbuelGhar,** Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, and his patience in reviewing and correcting this work.

I must express my deepest thanks to **Dr. Gihan ElSayed ElHawwary,** ASSISSTANT PROFESSOR of Obstetrics and Gynecology,
Faculty of Medicine, Ain Shams University, for guiding me throughout this
work and for granting me much of her time. I greatly appreciate her efforts.

Special thanks to my **Parents**, my **Husband** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Introduction	1
Aim of the Work	4
Review of Literature	
Recurrent miscarriage	5
Insulin resistance	31
Patients and Methods	£ ٣
Results	o,
Discussion	૦૧
Summary and Conclusion	V.
Limitations	V £
Recommendations	٧٥
References	۲۷
Arabic Summary	—

List of Abbreviations

166r. Full-term : Array Comparative genome hybridization **aCGH ANA** : Antinuclear antibodies APL : Antiphospholipid **ART** : Assisted-reproductive technique ASA : Acetylsalicylic acid **ASRM** : American Society for Reproductive Medicine **BMI** : Body mass index **CCS** : Comprehensive chromosomal screening **CGH** : Comparative genome hybridization **ESHRE** : European Society of Human Reproduction and **Embryology FISH** : Fluorescence in situ hybridization **GDM** : Gestational diabetes mellitus GH : Growth hormone : Week of gestation GW **HGP** : Hepatic glucose production HLA : Human leukocyte antigen HOMA : Homeostasis model assessment **HSV** : Herpes simplex virus HY : Histocompatibility : Immunoglobulin A **IgA IGF-I** : Insulin-like growth factor—I

IgM : ImmunoglobulinIR : Insulin resistance

IRs : Insulin receptors

IST : Insulin sensitivity test

IUGR : Intrauterine growth retardation

IVF : In vitro fertilization

IVIG : Intravenous administration of immunoglobulins

LA : Lupus anticoagulant

LBR : Lamin B receptor

LH : Luteinising hormone

LIT : Lymphocyte transfer

LMWH : Low-molecular-weight heparin

LPD : Luteal phase defect

MRI : Magnetic resonance imaging

NK : Natural killer

OGTT : Oral glucose tolerance test

PCOS : Polycystic ovary syndrome

PGD: Preimplantation genetic diagnosis

PGS: Preimplantation genetic screening

PROMISE: Progesterone in Recurrent Miscarriage

RCOG : Royal College of Obstetricians and

Gynecologists

RM : Recurrent miscarriage

SD : Standard deviation

SDF : Sperm DNA fragmentation

SPSS : Statistical package for social science

SSPG : Steady-state plasma glucose

SSPI : Steady-state plasma insulin

Th: T-helper cells

TNF: Tumor necrosis factor

TPO: Thyroid peroxidase antibodies

TSH: Thyroid stimulating hormone

UFH : Unfractionated heparin

URPL: Unexplained recurrent pregnancy loss

VTE : Thromboembolic events

2D : 2-dimnesional

List of Tables

Table N	o. Title Page	No.
Table (1):	Terms and definitions used in the diagnosis of miscarriage	5
Table (2):	Diagnostic criteria for APS according to Sapporo criteria and "the International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome"	13
Table (3):	Etiologies of recurrent pregnancy loss, recommended tests for diagnosis, and treatment options	15
Table (4):	Patients with recurrent miscarriage	22
Table (5):	Suggested Diagnostic Evaluation of Recurrent Pregnancy Loss Based on Etiology	23
Table (6):	Summary of current evidence regarding RM management	24
Table (7):	Therapeutic Interventions for Recurrent Pregnancy Loss Based on Etiology	30
Table (8):	Methods for Assessing Insulin Sensitivity and Resistance In Humans	32
Table (9):	Major endocrinal causes of recurrent spontaneous abortions	36
Table (10):	Comparison between the studied groups regarding demographic characteristics	50
Table (11):	Comparison between the studied groups regarding fasting blood glucose (mg/dL)	51
Table (12):	Comparison between the studied groups regarding fasting insulin (mU/mL)	52
Table (13):	Comparison between the studied groups regarding HOMA-IR	53

Table (14):	Comparison between the studied groups regarding glucose insulin ratio.	. 54
Table (15):	Correlations of number of previous miscarriages among RPL case group	. 55
Table (16):	Diagnostic performance of FBG, IR and HOMA-IR in differentiating RPL cases from control	.56
Table (17):	Diagnostic characteristics of cutoff points in differentiating RPL cases from control	. 57

List of Figures

Figure N	o. Title	Page No.
Figure (1):	Etiology of recurrent pregnancy los antiphospholipid antibody syndrom	
Figure (2):	Hysteroscopic resection of uterine	septum 9
Figure (3):	Proposed mechanism by which TN may decrease insulin sensitivity	-
Figure (4):	Comparison between the studied regarding fasting blood glucose	•
Figure (5):	Comparison between the studied regarding fasting insulin	-
Figure (6):	Comparison between the studied regarding HOMA-IR	-
Figure (7):	Comparison between the studied regarding gslucose insulin ratios	U 1
Figure (8):	ROC curve for FBG, IR and HC in differentiating RPL cases from C	
Figure (9):	Diagnostic charactersites of FE HOMA-IR and glucose insulin rational points in differentiating RPL case control	o cutoff es from

Introduction

Conventionally, the recurrent pregnancy loss was defined as three consecutive losses earlier than 20 weeks of gestation, but testing the women after 2 losses could spare them of another pregnancy failure; thus the definition was modified lowering the number of spontaneous losses to two (Mehmet et al., 2013).

Recurrent pregnancy loss affects 2%–4% of reproductive-age couples (*Kassie et al.*,2015), representing a challenge for the physicians, affecting both naturally conceived pregnancies and those obtained after assisted reproductive technology treatment (*Mehmet et al.*, 2013).

In the etiology of RPL a broad spectrum of factors has been described: chromosome anomalies, uterine malformations or anomalies, immunological factors, hypothyroidism, cervical incompetence, antiphospholipid syndrome, bacterial infections, and polycystic ovary syndrome (PCOS) but half of the cases remain unexplained (*Kassie et al., 2015*).

PCOS is the most common endocrine disorder in women, with prevalence between 6% and 15% (when the broader Rotterdam criteria are applied) (*Johansson et al., 2014*). The mechanisms through which pregnancy loss occurs in patients with PCOS include obesity, hyperinsulinemia, IR (insulin

resistance), hyperandrogenemia, poor endometrial receptivity, and elevated levels of LH (*Xu et al.*, 2013).

Glycemic control and insulin sensitivity are of the most important factors in reproductive pathophysiology. Impaired glucose tolerance, diabetes mellitus and Insulin Resistance (IR) have been long known to be linked to adverse reproductive outcomes, including infertility, miscarriages, and adverse pregnancy outcomes (*Ispasoiu et al.*, 2013).

Insulin resistance (IR) is a pathological condition in which cells fail to respond normally to the hormone insulin. To prevent hyperglycemia and noticeable organ damage over time, the body produces insulin when glucose starts to be released into the bloodstream from the digestion of carbohydrates (primarily) in the diet (*Hong et al.*, 2013).

Under normal conditions of insulin reactivity, this insulin response triggers glucose being taken into body cells, to be used for energy, and inhibits the body from using fat for energy, thereby causing the concentration of glucose in the blood to decrease as a result, staying within the normal range even when a large amount of carbohydrates is consumed. A habitually high intake of carbohydrates, simple sugars, and particularly fructose, e.g. with sweetened beverages, contributes to insulin resistance and has been linked to weight gain and obesity (*Gallagher*, 2017).

If high and excess blood sugar from the digestion of primarily carbohydrates in the diet is not sufficiently absorbed by cells even in the presence of insulin, the increase in the level of blood sugar can result in the classic hyperglycemic triad of polyphagia (increased appetite), polydipsia (increased thirst), and polyuria (increased urination). Avoiding carbohydrates and sugars, a no-carbohydrate diet or fasting can reverse insulin resistance (*Gallagher*, 2017).

Insulin resistance and hyperinsulinemia are claimed to be a potential cause of the high rate of pregnancy loss in patients with PCOS and have been linked to the metabolic and endocrine abnormalities associated with the physiopathology of recurrent pregnancy loss. Using the fasting blood glucose, fasting insulin, and HOMA (homeostasis model assessment) score, the insulin resistance was found three times higher in an unselected population of women with recurrent pregnancy loss when compared with normal population (*Gutaj et al.*, 2015).

Several studies demonstrated that the use of metformin in the treatment of PCOS reduces the risk of spontaneous abortion by decreasing the IR. It was therefore concluded that the IR is the key link between PCOS, obesity, and the recurrent pregnancy loss (*Marchi et al.*, 2015).