

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Impact of Carbamoyl-Phosphate Synthetase Gene Polymorphism on Increased Susceptibility to Persistent Pulmonary Hypertension in Neonates

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

 $\mathcal{B}y$

Abdallah Abdelgawad Mohamed Abdelgawad

M.B.B., Ch - Alexandria University (2015)

Under supervision of

Prof Dr. Mohamed Nasr El Deen El Barbary

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Prof Dr. Hala Mohamed Amin Fouad

Professor of Pediatrics
Faculty of Medicine - Misr University For Science And Technology

Prof Dr. Nashwa Nagy El Khazragy

Professor of Clinical Pathology and Hematology Faculty of Medicine - Ain Shams University

Dr. Dina Essam Abdelhamid Rabie

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of medicine
Ain Shams University 2021

Acknowledgment

First and foremost, I feel always indebted to Allah, the most kind and most merciful.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr Mohamed Nasr El deen El Barbary, Professor of Pediatrics faculty of medicine — Ain shams university for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof Dr. Hala Mohamed Amin Fouad**, Professor of Pediatrics Faculty of Medicine, Misr
University for science and technology for her sincere efforts,
fruitful encouragement.

I am deeply thankful to **Dr. Dina Essam Abdelhamid Rabie**, Lecturer of pediatrics, Faculty of Medicine, Ain Shams
University and **Dr. Nashwa Nagy el Khazragy**, Assistant
professor of Clinical Pathology and Hematology, Faculty of
Medicine, Ain Shams University for their great help,
outstanding support, active participation and guidance.

Abdallah Abdelgawad Mohamed

Words can never express my sincere thanks to my family and my loving wife and daughter for their generous emotional support and continuous encouragement, which brought the best out of me. I owe them all every achievement throughout my life.

I would like to express my everlasting gratitude to all my professors, colleagues and friends, so many of them influenced, encouraged and inspired me throughout the years. I wish them the best of all.

I would like also to thank the families of the patients who agreed willingly to be part of my study and without them; I would not have been able to accomplish this work.

List of contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the work	4
Review of literature	
Chapter (1): Neonatal persistent pulmonary hypertension	7
Chapter (2): Carbamoyl Phosphate Synthetase Gene Polyme	orphism36
Chapter (3): Impact of Carbamoyl Phosphate Synthetase Ge Polymorphism on Increased Susceptibility to Persistent Pulm Hypertension in Neonates	nonary
Patients and methods.	43
Results.	59
Discussion.	71
Summary	77
Conclusion.	83
Recommendations	85
References	87
Arabic summary	101

List of Abbreviations

Abb.	Full Term
SNPs	Single Nucleotide Polymorphisms .
CPS1	Carbamoyl-Phosphate Synthetase 1.
PPHN	Persistent pulmonary hypertension of Newborn .
Thr	Threonine .
Asn	Asparagine .
PVR	Pulmonary Vascular Resistance .
NO	Nitric Oxide .
GMP	Guanosine Monophosphate .
CAMP	Cyclic Adenosine Monophosphate .
DA	Ductus Arteriosus .
PBF	Pulmonary Blood Flow.
FO	Foramen Ovale .
PaO2	Arterial Partial Pressure of Oxygen .
PG	Prostaglandin .
CDH	Congenital Diaphragmatic Hernia .
RDS	Respiratory Distress Syndrome.
MAS	Meconium Aspiration Syndrome.
TTN	Transient Tachypnea of the Newborn.
ABCA3	ATP Binding Cassette protein member A3.
SP-B	Surfactant Protein B .
CRHR1	Corticotropin-Releasing Hormone Receptor 1.

List of Abbreviations cont ...

Abb.	Full Term
CRHBP	CRh-binding protein .
NSAIDs	Non steroidal Anti-Inflammatory Drugs .
TTE	Transthoracic echocardiogram .
PaCO2	Partial Pressure of Carbon Dioxide .
ABGs	Arterial Blood Gases .
ECMO	Extracorporeal Membrane Oxygenation .
OI	Oxygenation index.
CBC	Complete blood count .
RDW	Red cell distribution width .
NICU	Neonatal intensive care unit .
PT	Prothrombin time .
PTT	Partial Thromboplastin Time .
INR	International Normalized Ratio .
RVSP	Right Ventricle Systolic Pressure .
RAP	Right Atrial Pressure .
PDP	Pulmonary Diastolic Pressure .
TAPSE	Tricuspid Annular Plane Systolic Excursion .
TR	Tricuspid Regurgitation .
GLPS	Global Longitudinal Peak Strain.
CT	Computed Tomography .
MRI	Magnetic Resonance Imaging .
ATS	American Thoracic Society.

List of Abbreviations cont ...

Abb.	Full Term
AHA	American Heart Association .
PAH	Pulmonary artery hypertension .
HFV	High-frequency ventilation .
CNS	Central nervous system .
NG	Nasogastric .
NAGS	N-acetylglutamate Synthase .
OTC	Ornithine transcarbamylase .
ASS1	Argininosuccinate synthetase 1.
ASL	Argininosuccinate lyase .
NOS	Nitric oxide synthase.
TBX4	T-box transcription gene 4.
PSAP	Pulmonary systolic artery pressure .
FRET	Fluorescence Resonance Energy Transfer.
NVD	Normal Vaginal Delivery.
CS	Cesarean section .
BEAE	Bilateral equal air entry.
BDAE	Bilateral diminished air entry.
CRP	C-reactive protein .

List of Tables

Table No.	Title	Page No.
Table (1):	Demographic characteristics of studied grou	ıps60
Table (2):	Biochemical and Clincopathological feature group	
Table (3):	Distribution of CPS-1 rs4399666 A/C gene genotype among studied groups (PPHN/ he	
Table (4):	Distribution of mutant CPS-1 rs4399666 Appolymorphism genotype among studied grohealthy control)	oups (PPHN/
Table (5):	Association between C allele expression of rs4399666 A/C in neonates with PPHN vs he	
Table (6):	Association between A allele expression of rs4399666 A/C in neonates with PPHN vs he	
Table (7):	Serum level of Nitric oxide in different geners4399666 A/C in PPHN group	• •
Table(8):	Serum level of Nitric oxide in different geners4399666 A/C in PPHN group (ANOVA to	
Table(9):	Univariate regression analysis for the risk in gene polymorphism in PPHN in neonates	•
Table(10)	Univariate regression analysis for the risk in gene polymorphism in PPHN in neonates (b regression analysis)	inary logistic

List of figures

Figue No	Title	Page No.
Fig.(1):	Schematic diagram showing events during transition circulation: fetal to neonatal circulation	
Fig.(2):	Chromosomal Location of Human gene CPS1	37
Fig.(3):	Urea cycle and nitric oxide pathway	41
Fig.(4):	Amplification plots for CPS1 A/C gene polymorphi	sm 52
Fig.(5):	Amplification plot curve for homozygous CC genot (dominant expression)	
Fig.(6):	Amplification plot curve for homozygous AA genor (dominant expression)	
Fig.(7):	Amplification plot curve for heterozygous AC geno (Recessive expression)	• •
Fig.(8):	Negative controls amplification plot	55
Fig.(9):	Bar chart graph illustrating the frequency of positive in newborn with PPHN	
Fig(10):	Bar chart graph illustrating the distribution of CPS (rs4399666) (Wlid/mutant) among studied groups controls).	(PPHN /
Fig(11):	Bar chart graph illustrating the distribution of mutagenotypes (rs4399666) among studied groups (PP controls).	HN /
Fig(12):	Boxplot graph illustrating a high significant difference serum level of nitric oxide between neonates with healthy controls (p<0.0001)	PPHN and
Fig(13):	Boxplot graph illustrating a high significant difference serum level of nitric oxide between neonates with a wild type of CPS1 gene polymorphism (p<0.01)	mutant and

Introduction

INTRODUCTION

ersistent pulmonary hypertension of Newborn (PPHN) is a life threating condition , it is characterized by sustained elevation of pulmonary vascular resistance , and this leads to extra pulmonary right to left shunting across the patent ductus arteriosus and foramen oval [Dagle J.M. 2018] .

Consequence threating hypoxemia , right ventricular failure occurs , and the story ends in death . PPHN is a serious neonatal disease . PPHN results from failure of pulmonary vascular transition to extra uterine life [$Dong \ X \ 2019$] .

It occurs mostly in term or near term infants and occurs in 2/1000 newborn infants. PPHN can be idiopathic or can result secondary to neonatal pulmonary diseases such as congenital diaphragmatic hernia, pulmonary hypoplasia, respiratory distress syndrome, pneumonia and meconium aspiration syndrome [Alec W. A. 2004].

Vascular endothelial cells can synthesize endogenous L- arginine by recycling L-citrulline, the byproduct of nitric oxide synthesis, using components of the urea cycle; argininosuccinic acid synthase and lyase, respectively [Kaluarachchi D.C 2018].

In addition, endothelial cells may utilize circulating L-citrulline, formed by the mitochondrial enzymes of the urea cycle in the liver and proximal intestines [Klein J.M 2018].

Thus, a potential link exists between nitric oxide production and the urea cycle. Gene analysis that studied 48 SNPs (single nucleotide polymorphisms) in 6 urea cycle enzyme genes (CPS1, NAGS, ASS, ASL, ARG1, OTC) studied the association with PPHN [Chen X 2019]

Introduction