

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The Added Value of ST-Elevation in Lead aVR to Clinical TIMI Score in Predicting the Angiographic Severity of Coronary Artery Disease in Patients with Non ST-Elevation Myocardial Infarction

Thesis

Submitted for Partial Fulfillment of Master Degree in **Cardiology**

By

Abobakr Fawzy Elfahham M.B.B.CH

Under Supervision of

Prof. Dr. / Omar Awwad

Professor of Cardiology Ain Shams University, Faculty of Medicine

Dr. / Ahmed Mohamed Abdelsalam

Professor of Cardiology Ain Shams University, Faculty of Medicine

Dr./ Shehab Adel El Etriby

Lecturer of Cardiology Ain Shams University, Faculty of Medicine

Ain Shams University, Faculty of Medicine

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. / Omar Awwad**, Professor of Cardiology, Ain Shams University, Faculty of Medicine, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr. / Ahmed**Mohamed Abdelsalam, Professor of Cardiology, Ain

Shams University, Faculty of Medicine, for his sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr./ Shehab Adel El Etriby**, Lecturer of Cardiology, Ain Shams University,
Faculty of Medicine, for his great help, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Abobakr Fawzy Elfahham

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	9
Introduction	1 -
Aim of the Work	7
Review of Literature	
Non ST-Elevation Acute Coronary (NSTEACS)	-
Risk Stratification in Patients with Non Strate Coronary Syndrome	
• Lead aVR; a Valuable Forgotten Lead	29
Patients and Methods	46
Results	54
Discussion	72
Summary	79
Conclusion and Recommendations	81
References	82
Arabic Summary	

Tist of Tables

Table No.	. Title	Page No.
Table 1:	Methods of Risk Stratification	22
Table 2:	Clinical Indicators of Increased Ris	
Table 3:	Age of the study group	54
Table 4:	Possible Risk Factors	56
Table 5:	High Sensitive Troponin I Level	58
Table 6:	Coronary artery involvement	59
Table 7:	Risk factors in relation to coronary a involvement	
Table 8:	TIMI score	62
Table 9:	ECG findings	63
Table 10:	Relation between TIMI score and Coro artery involvement	
Table 11:	Relation between STE in avR and Cord artery involvement	•
Table 12:	Relation between STE in avR and score	
Table 13:	Relation between Coronary a involvement and STE in avR with score (low, intermediate and high risk).	TIMÏ
Table 14:	Sensitivity statistics of combined ST aVR and high risk TIMI as a predicti coronary involvement	on of

Tist of Figures

Fig. No.	Title P	Page No.
Figure 1:	Plaque vulnerability, disruption, as	
Figure 2:	Participation of inflammation in all stag of atherosclerosis	es
Figure 3:	Rates of all-cause mortality (D), (MI), as severe recurrent ischemia leading urgent revascularization (UR) through days	to 14
Figure 4:	Diagnostic algorithm and triage in acu coronary syndrome	ıte
Figure 5:	Initial (a) and follow-up (electrocardiograms of a 44-year-old mappersenting with chest heaviness as shortness of breath	an nd
Figure 6:	Electrocardiogram of a 71-year-own woman presenting with chest pain	old
Figure 7:	Electrocardiogram of a 54-year-old manufacture with chest pain and a history of corona	an
Figure 8:	artery bypass surgery	old ry ial
Figure 9:	effusion seen on an echocardiogram Electrocardiogram of a 54-year-ownan presenting with an acu	old ite
Figure 10:	pulmonary embolus Electrocardiograms from a patient during atrioventricular nodal reent tachycardia (AVNRT) (a) and while gives whether (b)	ng ry in
Figure 11:	sinus rhythm (b)	ial
	tacifycardia with 2.1 conduction	41

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 12:	Electrocardiogram of a 46-year-old with multiple syncopal episodes who found on electrophysiological testing have inducible ventricular fibrillation	was g to
Figure 13:	Electrocardiogram from a 39-year woman with a tricyclic antidepres overdose	
Figure 14:	Electrocardiograms showing right a left arm lead reversal (a), right arm leg lead reversal (b), corre electrocardiogram (C) and dextrocardiogram	arm- 1-left ected ardia
Figure 15:	(d) Electrocardiogram demonstrating a anterior fascicular block	
_	Age of the study group Sex of the Study group	54
Figure 18:	Possible Risk Factors	
Figure 19:	High Sensitive Troponin Level	58
Figure 20:	Coronary artery involvement	60
Figure 21:	Left main percentage	60
•	TIMI score	
Figure 23:	S	
Figure 24:	Comparison between T wave abnormal St depression, STE in avR regarding I findings	ECG
Figure 25:	Relation between TIMI score	and
Figure 96.	Comparison between no corre	
r igure 20:	Comparison between no coror involvement and coronary involver	
Figure 27:	regarding TIMI score	and
	involvement	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 98.	Relation between no STE in avR ar	nd and
rigure 20.	STE in avR regarding left main	
Figure 29:	Relation between no STE in avR an	
	in avR regarding TIMI score	69
Figure 30:	Role of TIMI and STE in avR	in the
•	prediction of -coronary involvement	

Tist of Abbreviations

Abb.	Full term
ACS	Acute coronary syndrome
	Acute myocardial infarction
	Atrioventricular nodal reentry tachycardia
	Coronary artery disease
	Confidence interval
	Electrocardiogram
HR	
	High-sensitivity cardiac troponin
	Left anterior descending coronary artery
	Low-density lipoprotein
	Left main coronary artery
LV	Left ventricular
MI	Myocardial infarction
NSTEMI	Non ST-segment elevation myocardial
	infarction
OR	$Odds\ ratio$
PAI-1	Plasminogen activator inhibitor-1
SCAD	Spontaneous coronary artery dissection
<i>SPECT</i>	Single photon-emission computed
	tomography
STEMI	ST-segment elevation myocardial infarction
<i>TF</i>	Tissue Factor
TIMI	Thrombolysis in Myocardial Infarction
<i>UA</i>	Unstable angina
UA/NSTEMI	Unstable angina or non–ST elevation
	myocardial infarction
<i>UR</i>	Urgent revascularization

Introduction

therosclerosis is the ongoing process of plaque formation involving primarily the intima of large and medium-sized arteries; the condition progresses relentlessly throughout a person's lifetime, before finally manifesting itself as an acute ischemic event. The term acute coronary syndrome (ACS) includes unstable angina (UA), non ST-segment elevation myocardial infarction (NSTEMI), and ST-segment elevation myocardial infarction (STEMI) (*Kumar and Cannon*, 2012).

Each year, a large number of patients in the United States are hospitalized for unstable angina or non–ST elevation myocardial infarction (UA/NSTEMI), a condition also referred to as non–ST-ACS (*Cannon and Braunwald*, 2012).

Unstable angina/NSTEMI constitutes a clinical syndrome subset of ACS that is usually, but not always, caused by atherosclerotic CAD and is associated with an increased risk of cardiac death and subsequent MI. In the spectrum of ACS, UA/NSTEMI is defined by ECG ST-segment depression or prominent T-wave inversion and/or positive biomarkers of necrosis (e.g., troponin) in the absence of ST-segment elevation and in an appropriate clinical setting (chest discomfort or anginal equivalent). During non-STEMI, there will be elevation of the biomarkers, indicative of myocardial necrosis. During unstable angina, however, there is no or only very minimal

elevation. This is the main distinguishing feature between the two diagnoses (Anderson et al., 2007).

The prevalence of NSTE-ACS is increasing relative to ST-segment elevation myocardial infarction (STEMI) due to changes in the distribution of risk factors in the population (e.g., older age, predominance of females, higher rate of diabetes), use of preventative medications, and increasingly sensitive troponin assays (Giugliano and Braunwald, 2015).

Frailty is a condition defined as a loss of biological reserve, which leads to impaired response to stressor events. Frailty has become a substantial factor in assessment of several special medical situations and has been established as a crucial clinical decision making. Furthermore, issue into pathophysiologic mechanism of this condition, like higher markers of thrombosis (D-dimer), endocrine unbalances, elevated inflammatory state (C-reactive protein and interleukin-6) and higher oxidative stress levels, contribute to the onset and outcome of ACS. It has been identified as a strong independent predictor of in-hospital and 30-day mortality in elderly patients presenting with NSTEMI. Among elderly patients admitted with ACS, 10% of > 65 years and 25%-50% of > 85 are considered frail. Frailty has been demonstrated to increase the all-cause mortality risk by 2.65-fold, any-type cardiovascular disease risk by 1.54-fold, major bleeding risk by 1.54-fold and hospital readmissions risk by 1.51-fold (Dai et al., 2016).

presentation of non-ST-elevation The myocardial infarction can be associated with progressive effort angina, resting pain to post infarction angina. Clinical presentation depends on the severity of the arterial injury, the size and type of thrombus formed, the extent and duration of ischemia, and the amount of previous myocardial necrosis. The extent of ischemia depends on the myocardial distribution of the ischemia-producing artery, the severity of the ischemiaproducing stenosis, the absence or presence of collateral circulation, and factors that affect the supply of oxygenated blood or that increase myocardial demands, such as the heart rate, blood pressure, and contractility (Hochman et al., 2011).

The ECG is considered one of the most important initial for diagnosing myocardial ischemia clinical tests infarction. Its correct interpretation, particularly in emergency department, is usually the basis for immediate therapeutic interventions and/or subsequent diagnostic tests (Wagner et al., 2009).

The electrocardiographic leads are more helpful in localizing regions of transmural than subendocardial ischemia. The ECG can also provide more specific information about the location of the occlusion within the coronary system (the culprit lesion) (Mirvis and Goldberger, 2012).

The most common ECG change with Subendocardial ischemia is ST Segment Depression. It may be limited to