

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The Protective Role of Chitosan Nanoparticles Against Hepatic Inflammation Induced in Rats

Thesis Submitted by
Enas Abdel Moniem Mohamed

(M.Sc. in Biochemistry, 2016)

For the Award of the Degree of Doctor of Philosophy in Biochemistry

Under Supervision of

Prof Dr. Ahmed M. Salem

Professor of Biochemistry Faculty of Science Ain Shams University

Prof Dr. Nashwa K. Ibrahim

Professor of Biochemistry Atomic Energy Authority

Prof Dr. Mahmoud M. Said

Professor of Biochemistry
Faculty of Science
Ain Shams University

Dr. Ahmed Mohamed Elbarbary

Assistant Professor
Polymer Chemistry Department
Atomic Energy Authority

Dr. Nashat M. M. Abd Alaty

Lecturer of Medicinal Chemistry Nuclear Materials Authority

Ain Shams University
Faculty of Science
Department of Biochemistry

Approval sheet

The Protective Role of Chitosan Nanoparticles Against Hepatic Inflammation Induced in Rats

Thesis Submitted by Enas Abdel Moniem Mohamed

(M.Sc. in Biochemistry, 2016)

For the Award of the Degree of Doctor of Philosophy in Biochemistry

Supervisors:

Prof Dr. Ahmed M. Salem Professor of Biochemistry - Faculty of Science -

Ain Shams University

Prof Dr. Mahmoud M. Said Professor of Biochemistry - Faculty of Science -

Ain Shams University

Prof Dr. Nashwa K. Ibrahim Professor of Biochemistry - Atomic Energy

Authority

Dr. Ahmed Mohamed Elbarbary Assistant Professor - Polymer Chemistry

Department - Atomic Energy Authority

Dr. Nashat M. Al Anwar Lecturer of Medicinal Chemistry - Nuclear

Materials Authority

Examiners Committee:

Prof Dr. Soha M. Hamdy Professor of Biochemistry - Faculty of Science -

El Fayoum University

Prof Dr. Samar S. Youssef Professor of Biochemistry - National Research

Centre

Prof Dr. Ahmed M. Salem Professor of Biochemistry - Faculty of Science -

Ain Shams University

Prof Dr. Mahmoud M. Said Professor of Biochemistry - Faculty of Science -

Ain Shams University

Biography

Name Enas Abdel Moniem Mohamed

Date of Graduation 1998, Faculty of Science

Biochemistry Department

Ain Shams University

Degrees awarded B.Sc. in Biochemistry (1998)

M.Sc. in Biochemistry (2016)

Ph.D.Sc. in Biochemistry (2021)

Occupation Chemist in Nuclear Materials

Authority

Declaration

This thesis has not been submitted for a degree at this or any other university.

Enas Abdel Moniem Mohamed

ACKNOWLEDGEMENTS

First of all, cordial thankfulness to "Allah" who enabled me to finish this piece of work appropriately.

I would like to express my deep appreciation and gratitude to *Prof. Dr. Ahmed M. Salem*, Professor of Biochemistry, Faculty of Science, Ain Shams University, for his consistent supervision, constructive suggestions and meticulous scientific help.

My deepest appreciation and thanks are offered to *Dr. Mahmoud M. Said*, Professor of Biochemistry, Faculty of Science, Ain Shams University, for his great support, helpful advice, valuable technical assistance and fruitful comments.

Words are not enough and fail to express my deep thanks and gratitude to *Dr. Nashwa K. Ibrahim*, Professor of Biochemistry, Atomic Energy Authority, for her valuable encouragement, sincere guidance and wholehearted support throughout this work.

I take this opportunity to express my profound gratitude to *Dr. Ahmed Mohamed Elbarbary*, Assistant Prof., Polymer Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, for the preparation of nanostructured oligochitosan.

Also thanks are due to *Dr. Nashat M. M. Abd Alaty*, Lecturer of Medicinal Chemistry, Nuclear Materials Authority, for his support during this work.

Finally, I would like to express my deep thanks to *Prof. Dr. Adel Baker Kolosy*, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for conducting histopathological examination.

The Protective Role of Chitosan Nanoparticles Against Hepatic Inflammation Induced in Rats

Enas Abdel Moniem Mohamed Faculty of Science - Ain Shams University

ABSTRACT

The current study was undertaken to investigate the hepatoprotective potential of nanostructured oligochitosan (NOC) against the synergistic toxic effects of γ -irradiation exposure and carbon tetrachloride (CCl₄) intoxication in male rats. A total of 64 adult male Sprague-Dawley rats were allocated into eight groups; control, administered, γ-irradiated, CCl₄-intoxicated, NOC-pretreated γ-irradiated, NOC-pretreated CCl₄-intoxicated, γ-irradiated and CCl₄-intoxicated, NOC-pretreated CCl₄-intoxicated and γ-irradiated. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results demonstrated that the oligochitosan prepared by exposure to gamma irradiation was in the range of nanoparticles. A synergistic hepatotoxic effect was demonstrated following the exposure of rats to γ-irradiation and CCl₄ intoxication, along with the induction of oxidative stress, inflammation and apoptosis. NOC was able to protect the hepatocytes from the combined toxic insult through suppressing lipid and maintaining hepatic oxidations, functions, downregulating the expression of some inflammatory genes, including nuclear factor kappa B (NF-κB) and interleukin 1 beta (IL-1β), as well as enhancing the expression of the antiapoptotic Bcl2 gene as well as suppressing the proapoptotic Bax gene expression. Histological findings of liver tissues verified the biochemical and molecular data. The study clarified some of the molecular mechanisms by which NOC protects the liver against the synergistic toxic effect of γ -irradiation and CCl₄.

KEYWORDS: Oligochitosan, nanostructures, γ -irradiation, CCl_4 , rats, liver

CONTENTS

	Page
• List of Abbreviations	I
• List of Figures	III
• List of Tables	VII
Chapter I: Introduction and Aim of the Work	1
Chapter II: Review of Literature	5
 Radiation 	5
✓ Types of radiation	6
✓ Ionizing radiation	6
✓ Non-ionizing radiation	8
✓ Biological effects of ionizing radiation	8
✓ Mechanism of ionizing radiation in biology	12
• Liver	13
✓ Oxidative stress induced liver diseases	14
✓ Inflammation	14
✓ Hepatitis	19
✓ Fibrosis	20
✓ Cirrhosis	22
✓ Apoptosis	23
✓ Necrosis	27
• CCl ₄ toxicity	28
✓ CCl ₄ induced hepatotoxicity	32
 Antioxidants 	34
✓ Chitin	36
✓ Chitosan	38
✓ Nanostructured oligochitosan	40

Chapter III: Materials and Methods	44
 Materials 	44
✓ Experimental animals	44
✓ Radiation facilities	44
✓ Chemicals	45
 Methods 	45
✓ Preparation of nanostructured oligochitosan	45
✓ Preparation of CCl₄ solution	46
 Characterization and analysis of synthesized NOC 	47
✓ Determination the relative viscosity of synthesized NOC	47
✓ Determination of free radical scavenging activity of	47
synthesized NOC	
✓ FT-IR	49
✓ UV-Vis	49
✓ DLS	49
✓ TEM	50
✓ Experimental design	50
✓ Sample preparation	53
✓ Preparation of tissue homogenate	54
✓ Determination of aspartate transaminase activity	54
✓ Determination of alanine transaminase activity	56
✓ Determination of alkaline phosphatase activity	59
✓ Determination of gamma glutamyl transferase activity	60
✓ Determination of lactate dehydrogenase (LDH) activity	62
✓ Determination of total and direct bilirubin	64
✓ Determination of total protein concentration	67
✓ Determination of albumin concentration	68
✓ Determination of hepatic malondialdehyde level	70
✓ Determination of hepatic protein carbonyl content level	72
✓ Quantitative determination of NF-κB, IL-1β, Bax and Bcl2 expression levels by real time polymerase chain reaction	75
 Histological examination 	87

Statistical analysis	89
Chapter IV: Results	
✓ The relative viscosity of synthesized NOC	90
✓ Scavenging activity of synthesized NOC	91
✓ Characterization of synthesized NOC	92
 FT-IR spectroscopy 	92
 UV-Vis spectroscopy 	94
 Particle size distribution 	95
- DLS	95
- TEM	98
✓ Change in serum AST, ALT and ALP activities in different groups	102
✓ Change in serum GGT and LDH activities, as well as T.BIL and D.BIL levels in different groups	106
✓ Change in serum T.PRO, ALB and GLO concentrations, as well as (A/G) ratio in different groups	110
✓ Change in hepatic MDA level and PCC in different groups	114
✓ Change in relative gene expression of NF-κB and IL-1β in different groups	117
✓ Change in Bax, Bcl2 levels and Bax/Bcl2 ratio in different groups	120
✓ Histological examination	123
Chapter V: Discussion, Conclusions and Recommendation	129
Summary	154
Reference	158

LIST of ABBREVIATIONS

Abbreviation Full name

ALB : Albumin

ALP : Alkaline phosphatase
ALT : Alanine aminotransferase
ANOVA : one-way analysis of variance

AST : Aspartate aminotransferase ATP : Adenosine triphosphate

BAK : Bcl2 homologous antagonist killer

Bax : Bcl2-associated X protein

Bcl2 : B-cell lymphoma-2 protein family BH3 : Proteins inhibit the antiapoptotic Bcl2

CCl₄ : Carbon tetrachloride CCl₃ : Trichloromethyl

Cl₃COO : Trichloromethyl peroxide radicals

COX-2 : Cyclooxygenase-2
DB : Direct bilirubin

DLS : Dynamic light scatteringDNA : Deoxyribonucleic acidDNPH : 2,4-dinitrophenylhydrazine

DPPH : 2,2-diphenyl-1-picrylhydrazyl hydrate

ECM : Extracellular matrix

FDA : The United States Food and Drug

Administration

FT-IR : Fourier-transform infrared GGT : Gamma glutamyl transferase

GLO : Globulin

H₂O₂ : Hydrogen peroxide
 HO· : Hydroxyl radicals
 HO₂ : Hydroperoxyl radical
 HCC : Hepatocellular carcinoma

HSC : Hepatic stellate cells