

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

STUDY OF THE EFFECT OF INTRADIALYTIC EXERCISE ON THE BONE PROFILE IN PREVALENT HEMODIALYSIS PATIENTS

Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

Presented by

Ahmed Mohamed Bakr Bakr Mohamed

(M.B., B.Ch)

Supervised by

Prof. Dr. Howaida Abdelhameed Elshinnawy

Professor of Internal Medicine
Faculty of Medicine, Ain Shams University

Prof. Dr. Dina Abou-Bakr Farrag

Assistant Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine, Ain Shams University

Dr. Moustafa AbdElnassier AbdElgawad

Lecturer of Internal Medicine Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2021

تاثيرالتمرينات اثناء جلسه الغسيل على علامات العظام لدى مرضى الفشل الكلوي الذين على غسيل الكلى بانتظام

رسالة

توطئة للحصول علي درجة الماجستير في الباطنة العامة معدمة من

الطبيب / احمد محمد بكر بكر بكالوريوس الطب و الجراحة تحت إشراف

أد/ هويدا عبدالحميد الشناوي

أستاذ الباطنة العامة كلية الطب- جامعة عين شمس

أد/ دينا ابو بكر فراج

أستاذ مساعد الطب الطبيعي والروماتيزم والتأهيل كلية الطب- جامعة عين شمس

د/ مصطفى عبدالنصير عبدالجواد

مدرس الباطنة العامة كلية الطب- جامعة عين شمس كلية الطب جامعة عين شمس

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Howaida Abdelhameed Elshinnawy,** Professor of Internal Medicine, Ain Shams University, for her close supervision, valuable instructions, continuous help, patience, advices and guidance. She has generously devoted much of her time and effort for planning and supervision of this study. It was a great honor to me to work under her direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Dina Abou-Bakr Farrag**, Assistant Professor of Physical Medicine, Rheumatology and Rehabilitation, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Moustafa Abd-Elnassier Abd-Elgawad,** Lecturer of Internal Medicine, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues,, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

CONTENTS

Title		Page
•	List of Abbreviations	I
•	List of Table	III
•	List of Figures	5
•	Introduction	1
•	Aim of the work	7
•	Review of literature	
	Chapter (1): Mineral bone disorder	8
	Chapter (2): Exercise	31
•	Patients and methods	47
•	Results	55
•	Summary	79
•	CONCLUSIONS	
•	Recommendation	82
•	References	
•	الملخص العربي	

LIST OF ABBREVIATIONS

CKD : Chronic Kidney Disease

MBD: Mineral Bone Disease

PTH : Parathormone

ALP : Alkaline Phosphatase

BALP: Bone Alkaline Phosphatase

IDE : Intradialytic Exercise

KIDEGO: Kidney Disease Improving Global Outcomes

ESRD : End Stage Renal Disease

CRP : C reactive protein

CV : Cardiovascular

ROD : Renal Osteodystrophy

BMD : Bone Mineral Density

RPE: Rate of Perceived Exertion

GFR: Glomerular Filtration Rate

DM: Diabetes Mellitus

ISHD: Ischemic Heart Disease

COPD : Chronic Obstructive Pulmonary Disease

DBP : Vitamin D binding protein

HD : Hemodialysis

SHPT : Secondary hyperparathyroidism

PO4 : Phosphorus

EBCT : electron beam computed tomography

FDA: Food and Drug Administration

RAAS : Renin angiotensin aldosterone system

Po4 : Phosphorus

CUA : Calci-uremic arteriolopathy

PA : Physical activity

6 MWT : six minutes walk test

∠List of Abbreviations

METs : Metabolic equivalent tasks

SPBT: Short Performance Battery Tests

BMI : Body Mass Index

HR : Heart Rate

ELISA: Enzyme-Linked Immunosorbent Assay

CBC : Complete Blood Picture

Ca : Calcium

EP : Exercise Program

HGB: Hemoglobin

LIST OF TABLE

Table No	Subjects	Page
Table (1):	Aerobic endurance exercise training on a cycle ergometer	44
Table (2):	Comparison between exercise group and control group according to demographic data	55
Table (3):	Comparison between exercise group and control group according to medical diseases and smoking.	58
Table (4):	Comparison between exercise group and control group according to 6min walk test by meters	59
Table (5):	Comparison between exercise group and control group according to short battery tests scores at baseline.	59
Table (6):	Comparison between short battery tests scores before and after exercise program (exercise group).	60
Table (7):	Comparison between short battery tests scores at baseline and after 3months in control group	61
Table (8):	Comparison Between both groups regarding Change in Physical Performance after 3 months.	62
Table (9):	Comparison between exercise group and control group according to baseline laboratory data.	63
Table (10):	Comparison between baseline and after 3 months according to laboratory data in exercise group	64

∠List of Table

Table No	Subjects	Page
Table (11):	Comparison between baseline and after 3 months according to laboratory data in control group.	66
Table (12):	Correlation between after 3months ALP, PTH, BALP with SPBT scores and other parameters, using Spearman's rank correlation coefficient (rs), in the exercise	
	group.	67
Table (13):	Correlation between ALP, PTH and BALP, using Spearman's rank correlation coefficient	
	(rs), in the exercise group.	67

LIST OF FIGURES

Figure No	Subjects	Page
Figure (1):	PTH parathyroid hormone	26
Figure (2):	Bone in dialysis patients.	28
Figure (3):	How to set up an individually dosed and adapted exercise training program	37
Figure (4):	Intradialytic cycling exercise training program quoted from	40
Figure (5):	The Borg scale – rate of perceived exertion (RPE)	43
Figure (6):	Bar chart between exercise group and control group according to age (years).	56
Figure (7):	Bar chart between exercise group and control group according to gender.	56
Figure (8):	Bar chart between exercise group and control group according to BMI	57
Figure (9):	Bar chart between exercise group and control group according to smoking and medical diseases.	58
Figure (10):	Bar chart between short battery tests scores before and after EP in exercise group	60
Figure (11):	Bar chart between baseline and after 3 months according to short battery tests scores in control group	61
Figure (12):	Bar chart showing changes in physical performance in exercise group compared to control group after 3 months.	62
Figure (13):	Bar chart between baseline and after 3 months according to ALP and PTH in exercise group.	65

Ø	List	of	Figures

Figure No	Subjects	Page
Figure (14):	Bar chart between baseline and after 3 months according to Albumin and BALP in exercise group.	65
Figure (15):	Bar Chart Showing no Difference in Baseline and After 3 months serum alkaline phosphatase, Bone specific alkaline phosphatase and parathyroid hormone in	
	Controls.	66

Abstract

Background: Chronic kidney disease increases the risk of fractures and altered bone and mineral metabolism. Exercise training could be a non-pharmacological therapeutic intervention. The aim of this work is to evaluate the effect of intradialytic exercise training on bone markers in hemodialysis (HD) patients.

Results: Forty adult patients on regular HD participated in the study. Twenty of which completed 3 months supervised intradialytic cycling exercise program and 20 served as controls. At baseline, there was no difference between both groups regarding age, sex, physical performance, and laboratory studies performed. After 3 months, the exercise group showed significant improvement in short performance battery test (SPBT) total score (P<0.001) associated with significant decrease in serum parathormone (PTH) (P=0.01) and increase in serum alkaline phosphatase (ALP) and bone specific alkaline phosphatase (BALP) (P<0.05 and P<0.001 respectively). Controls did not show similar change in SPBT or laboratory studies. There was no significant change in serum calcium or phosphorus in both groups. A significant positive correlation was observed between SPBT scores post-exercise and both BALP and ALP levels (r=0.432, P=0.01 and r=0.645, P<0.01 respectively). Also, an inverse relation was observed between SPBT and PTH (r=-0.503, P=0.01).

Conclusion: Intradialytic cycling exercise program resulted in significant increase in physical performance associated with decrease in serum PTH and increase in BALP and ALP in HD patients. This indicates the positive influence of exercise not only on physical performance in dialysis patients but also on bone metabolism.

Keywords: Intradialytic exercise, Bone-specific alkaline phosphatase, Bone biomarkers, PTH