

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Possible Role of Deferoxamine in Autophagy Regulation Via Divalent Metal Transporter-1 (DMT1) in a Rat Model of Liver Cirrhosis-Induced Osteoporosis

Thesis submitted for partial fulfilment of M.D. in clinical pharmacology By

Shereen Helmy Abdel-Meguid HasanMaster of Clinical Pharmacology, Ain Shams University,
2015

Under Supervision of:

Prof. Dr. Lobna Fouad Abd El-Aziz Bassyouni

Professor of Clinical Pharmacology, Faculty of Medicine, Ain Shams University

Prof. Dr. Suzi Sobhy Atalla

Professor and Head of Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University

Prof. Dr. Wesam Mostafa El-Bakly

Professor of Clinical Pharmacology, Faculty of Medicine, Ain Shams University

Ass. Prof. Dr. Doaa Ibrahim Mohamed Mohamed

Assistant Professor of Clinical Pharmacology, Faculty of Medicine, Ain Shams University

Ass. Prof. Dr. Eman Khairy Farahat

Assistant Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2021

TABLE OF CONTENTS

Topic	Page
List of Abbreviations	ii
List of Tables	iv
List of Figures	vi
Abstract	1
Introduction	3
Aim of the Work	7
Review of Literature:	
- Chapter 1: Liver Cirrhosis & Osteoporosis	8
- Chapter 2: Role of Iron Overload	18
- Chapter 3: Autophagy	24
- Chapter 4: Current Treatment Approaches of	
Osteoporosis in Chronic Liver Disease	
- Chapter 5: Animal Models of Liver Cirrhosis	34
Associated with Osteoporotic Changes	
- Chapter 6: Deferoxamine	43
Materials and Methods	48
Results	59
Discussion	98
Summary and Conclusion	114
References	122
Arabic Summary	١

LIST OF ABBREVIAITONS

Abbreviation	Full Name
AGA	American Gastroenterological Association
ALT	Alanine Aminotransferase
ANOVA	Analysis of Variance
AST	Aspartate Aminotransferase
bFGF	Basic Fibroblast Growth Factor
BMD	Bone Mineral Density
BMI	Body Mass Index
CCI4	Carbon Tetrachloride
CLD	Chronic Liver Disease
DFO	Deferoxamine
DMT1	Divalent Metal Transporter-1
DFX	Deferasirox
ECM	Extracellular Matrix
H&E	Hematoxylin and Eosin
HCC	Hepatocellular Carcinoma
HOD	Hepatic Osteodystrophy
HSCs	Hepatic Stellate Cells
HYP	Hydroxyproline
ICH	Intracerebral Hemorrhage
IGF-1	Insulin-Like Growth Factor-1
IL	Interleukin
IM	Intramuscular
INF-γ	Interferon-γ
IP	Intra-Peritoneal
IV	Intravenous
LC3	Light Chain 3
LDs	Lipid Droplets
LSD	Least Significant Difference
MCP-1	Monocyte Chemoattractant Protein-1
NAFLD	Non-Alcoholic Fatty Liver Disease
Nramp	Natural Resistance-Associated
	Macrophage Protein

NTBI	Non-Transferrin-Bound Iron
OC	Osteocalcin
OLT	Orthotopic Liver Transplantation
OVX	ovariectomized
PBC	Primary Biliary Cholangitis
PBS	Phosphate Buffer Solution
PDGF	Platelet-Derived growth Factor
PTH	Parathormone
qPCR	Quantitative Polymerase Chain Reaction
RBC	Red Blood Cell
ROS	Reactive Oxygen Species
SC	Subcutaneous
SEM	Standard Error of Mean
TAA	Thioacetamide
TGF-β1	Transforming Growth Factor-β1
TNF	Tumour Necrosis Factor
Vit D	Vitamin D
WHO	World Health Organization

LIST OF TABLES

Table Number	Table Title	Page
1	Effect of chronic treatment with DFO (300 mg/kg 3 times per week for 4 weeks) on liver index and body weight in a rat model of TAA induced liver cirrhosis associated with osteoporotic changes.	62
2	Effect of chronic treatment with DFO (300 mg/kg 3 times per week for 4 weeks) on liver enzymes and serum albumin in a rat model of TAA induced liver cirrhosis associated with osteoporotic changes.	65
3	Effect of chronic treatment with DFO (300 mg/kg 3 times per week for 4 weeks) on serum iron and ferritin in a rat model of TAA induced liver cirrhosis associated with osteoporotic changes.	68
4	Effect of chronic treatment with DFO (300 mg/kg 3 times per week for 4 weeks) on serum HYP and OC in a rat model of TAA induced liver cirrhosis associated with osteoporotic changes.	71
5	Effect of chronic treatment with DFO (300 mg/kg 3 times per week for 4 weeks) on DMT1 gene expression in liver and bone tissues in a rat model of TAA induced liver cirrhosis associated with osteoporotic changes.	74

6	Effect of chronic treatment with DFO (300 mg/kg 3 times per week for 4 weeks) on LC3 gene expression in liver and bone tissues in a rat model of TAA induced liver cirrhosis associated with osteoporotic changes.	77
7	Area percentage of stained collagen in liver tissue in all groups.	86
8	Cortical bone thickness and trabecular bone volume in all groups.	93

LIST OF FIGURES

Figure Number	Figure Title	Page
1	Role of iron overload in liver disease progression.	20
2	Schematic representation of autophagosome formation.	25
3	Diagram illustrating the possible relationships between autophagy and osteoporosis.	29
4	Simplified model for the formation of noxious TAA metabolites and their effects in hepatocytes.	39
5	Structure of deferoxamine.	44
6	Structure of Feroxamine.	44
7	Bar chart graph illustrating the effect of chronic treatment with DFO (300 mg/kg 3 times per week for 4 weeks) on: A) liver weight B) body weight C) liver index% in a rat model of TAA induced liver cirrhosis associated with osteoporotic changes.	63
8	Bar chart graph illustrating the effect of chronic treatment with DFO (300 mg/kg 3 times per week for 4 weeks) on A) serum ALT, B) serum AST, C) serum albumin in a rat model of TAA induced liver cirrhosis associated with osteoporotic changes.	66
9	Bar chart graph illustrating the effect of chronic treatment with DFO (300 mg/kg 3 times per week for 4 weeks) on A) serum Iron B) serum ferritin in a rat model of TAA induced liver	69

	cirrhosis associated with	
	osteoporotic changes.	
10	Bar chart graph illustrating the effect of chronic treatment with DFO (300 mg/kg 3 times per week for 4 weeks) on A) serum HYP, B) serum OC in a rat model of TAA induced liver cirrhosis associated with osteoporotic changes.	72
11	Bar chart graph illustrating the effect of chronic treatment with DFO (300 mg/kg 3 times per week for 4 weeks) on A) liver DMT1 gene expression, B) bone DMT1 gene expression in a rat model of TAA induced liver cirrhosis associated with osteoporotic changes.	75
12	Bar chart graph illustrating the effect of chronic treatment with DFO (300 mg/kg 3 times per week for 4 weeks) on A) liver LC3 gene expression, B) bone LC3 gene expression in a rat model of TAA induced liver cirrhosis associated with osteoporotic changes.	78
13	Pearson's correlation between DMT1 expression and LC3 expression in (A) Liver (r=0.9706, p< 0.0001) (B) Bone(r=0.9956, p< 0.0001).	79
14	A photomicrograph of sections of rat liver (H&E x100).	82
15	A photomicrograph of sections of rat liver (H&E ×1000).	83
16	A photomicrograph of sections of rat liver (Mallory stain x250).	85

17	Area percentage of stained collagen in liver tissue in all groups.	87
18	A photomicrograph of sections of rat livers (Prussian Blue x640).	89
19	A photomicrograph of rat femur (H&E x250).	92
20	cortical bone thickness & trabecular bone in all groups.	94
21	A photomicrograph of a sections of rat femur (Prussian Blue x250).	96
22	Pearson's correlation between area percentage liver fibrosis with cortical bone thickness and trabecular bone volume.	97

ABSTRACT

BACKGROUND: The liver plays a major role in iron homeostasis. Thus, in patients with chronic liver disease, iron regulation may be disturbed. Iron deposits responsible for further damage to hepatic and extrahepatic tissues by inflicting autophagy. AIM: The present study was designed to assess the effect of deferoxamine (DFO) on a rat model of thioacetamide (TAA) induced liver cirrhosis associated with osteoporotic changes. Further, to examine the possible role of DMT1 and autophagy. METHODS: Rats were divided into 4 groups Naïve control, DFO group, TAA untreated group received TAA ip (200 mg/kg/rat) twice weekly for 12 weeks, and TAA DFO treated group received TAA intra-peritoneal in addition to DFO intraperitoneal injections (300 mg/kg/ 3 times/week, for the last 4 weeks of TAA injections. **RESULTS:** DFO showed improvement in liver functions together with reduction in liver cirrhosis-associated iron overload, as evidenced by decrease in serum ferritin and decreased DMT1 expression. Moreover it had a beneficial effect in bone changes in rat model of liver cirrhosis indiced by TAA as evidenced by increased cortical thickness, trabecular volume, increased osteocalcin, and reduced hydroxyproline. These effects might be related to DFO effect on autophagic process as evidenced by decrease in LC3 expression. *CONCLUSION:* Autophagy induced by iron overload is a suspected mechanism that mediates the toxic effects on bone in thioacetamide induced model of liver cirrhosis. Iron chelation, in particular with deferoxamine, has the potential to alleviate bone changes and the suspected mechanism. Further work is still needed to be translated to a clinical trial for hepatic osteodystrophy.

KEYWORDS: liver cirrhosis, osteoporotic changes, iron, thioacetamide, Deferoxamine, Autophagy.

INTRODUCTION

Liver cirrhosis, end-stage of chronic liver disease (CLD), is the leading cause of liver-related death globally regardless the etiology (*Roth et al.*, *2018*). Almost all patients with CLD show altered bone metabolism and severe osteoporosis in up to 75% of the affected patients. Due to high prevalence, the generic term hepatic osteodystrophy (HOD) evolved, describing altered bone metabolism, decreased bone mineral density, and deterioration of bone structure. Once developed, HOD is difficult to be treated and increases the risk of fragility fractures. Existing fractures affect the quality of life and, more importantly, long-term prognosis of these patients, which presents with increased mortality (*Ehnert et al.*, *2019*).

Pathogenesis of HOD is due to imbalance of factors responsible for bone matrix synthesis, leading to bone mass loss, bone fragility and recurrent pathological fractures. Many risk factors share in the pathogenic mechanisms of osteoporosis, including disturbed interaction between bone osteoblasts and osteoclasts, reduction of Insulin-like Growth Factor-1 (IGF-1) levels, low vitamin D levels, hypogonadism, poor nutrition, and iron overload (*Högler, Baumann and*