

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Electrical Communications

Design and Implementation of Efficient Cloud-based 5G Management Protocol

A Thesis submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Electrical Engineering (Electronics Engineering and Electrical Communications)

by:

Wael S. Afifi

Master of Science in Electrical Engineering Electronics and Communication Engineering Faculty of Engineering, Mansoura University, 2013

Supervised by:

Prof. Hadia M. El-hennawy - Faculty of Engineering, Ain Shams
University

Prof. Salwa M. Nassar - Electronics Research Institute **Assoc. Prof. Ali A. El-Moursy** - University of Sharjah

Cairo - (2021)

In the name of Allah, the Entirely Merciful, the Especially Merciful.

"My Lord, enable me to be grateful for Your favor which You have bestowed upon me and upon my parents and to do righteousness of which You approve. And admit me by Your mercy into [the ranks of] Your righteous servants."

The Holy Quran,

Sura: An-Naml, Aya (19).

Acknowledgment

All praise is due to Allah Who guided me to this. I could not truly have been led aright if Allah had not guided me.

I would like to express my sincere gratitude to my supervisors:

- Dr. Salwa Nassar, who thankfully keeps advising me during the whole research to approach the best outcomes.
- Dr. Hadia El-Hennawy, who keeps pushing me forward through her valuable comments to make this research in the optimum way.
- Dr. Mohamed Saad, who keeps the fruitful follow-up through his valuable comments to enrich the research technically.
- Special thanks of gratitude go to Dr. Ali El-moursy, who gave me the
 golden opportunity to begin this research, and keep helping me in solving
 any issues I faced during the whole research.

I'd like to send my acknowledge to the STDF for their financial grant of the Cloud computing center of excellence (number 5220). This research was supported in part by the Distributed and Networked Systems Research Group Operating Grant number 150410, University of Sharjah and in part by a University of Sharjah Targeted Project no. 1602040336-P.

Finally, I am very grateful to my dear parents and my family. Thank you all for being always there when I needed you most. Thank you for believing in me and supporting me through all these years. I think without your support and your prayers, none of this work would be accomplished.

List of Abbrevations

1G The First Generation of Cellular Systems

2G The Second Generation of Cellular Systems
 3G The Third Generation of Cellular Systems

3G The Third Generation of Cellular Systems3GPP Third Generation Partnership Project

The Fourth Generation of Cellular Systems
 The Fifth Generation of Cellular Systems

AMPS Advanced Mobile Phone System
CDMA Code Division Multiple Access

EDGE Enhanced Data-rate for GSM Evolution

ETSI European Telecommunications Standards Institute

FDD Frequency Division Duplex GPRS General Packet Radio Service

LTE Long Term Evolution

LTE-A Long Term Evolution Advanced

MATLAB Matrix Laboratory

MIMO Multiple Input Multiple Output

OFDMA Orthogonal Frequency Division Multiple Access

PC Personal Computer
QoE Quality of Experience
QoS Quality of Service
RB Resource Block
RF Radio Frequency

RRH Remote Radio Head

TDMA Time Division Multiple Access

TTI Transmission Time Interval

UE User Equipment

UMTS Universal Mobile Telecommunications SystemWCDMA Wideband Code Division Multiple Access

List of Tables

5.1	Review Summary for Available RB Scheduling Algorithm in	
	4G/5G Systems	33
5.2	EUFS Simulation Parameters	42
5.3	Experiments Description	44
6.1	Review Summary for Recent State-of-the-art Clustering Algo-	
	rithms	62
6.2	LANCDC Simulation Parameters	70
6.3	Performance comparison for the user connectivity status using	
	LANCDC vs. other state-of-the-art algorithms	73

List of Figures

2.1	Carrier Aggregation	10
2.2	MIMO vs. Massive MIMO	10
3.1	Cloud Computing Overview	13
3.2	Cloud Computing Services	15
4.1	Tidal Effect in cellular Networks	19
4.2	Fronthaul and Backhaul Links in C-RAN Architectutre	20
4.3	Flexible Functional Split in C-RAN	24
5.1	Flowchart for the proposed "EUFS" algorithm	36
5.2	Abstracted Processing Sequence for EUFS Algorithm	40
5.3	Average throughput for cell-edge users using EUFS relative to	
	the average throughput for cell-edge users using fixed probabili-	
	ties, across different K	45
5.4	Performance comparison for cell-edge/cell-centric users using	
	different scheduling algorithms and fixed number of users	47
5.5	Performance comparison for cell-edge users using different schedul-	
	ing algorithms and variable number of users	49
5.6	Comparing SNR for cell-edge users using different scheduling	
	algorithms	51
5.7	Comparing SNR for cell-centric users using different scheduling	
	algorithms	52
5.8	Fairness Index Comparison	52
5.9	Execution Time Comparison	53
6.1	Tidal effect in wireless networks	57
6.2	Flowchart for the proposed "LANCDC" algorithm	65

6.3	Flowchart for the method used to determine the ratio of RBs that		
	each cell provides for CoMP in "LANCDC" algorithm	66	
6.4	Simulated network topology at day time	70	
6.5	Simulated network topology at night time	71	
6.6	Total user throughput comparison	74	
6.7	Total BS power dissipation comparison.	75	

Abstract

With the emerging of fifth generation (5G) wireless networks, industry and academia have been working on introducing powerful processing algorithms for massive data traffic, while providing ubiquitous connectivity and supporting plentiful applications with different quality of service (QoS) demands. As the experimental deploying and running for 5G networks in some countries (e.g., USA, China, England, France, ...etc) has been initiated recently, more drastic improvements need to be made in cellular network architecture and related processing algorithms to meet the expectations of new generation investors and customers. Some of these expectations (but not limited to) include massive data rates, huge capacity and coverage, diminished latency and improved quality of service (QoS). Fortunately, incorporating the Cloud Computing technology into the 5G radio access network (RAN) layer will contribute in making the management and processing of user data faster and more reliable than conventional 4G networks.

One of the issues that usually concerns cellular network operators is the celledge problem, where users existed at the edge of the cell, i.e., far away from the radio transceiver tower - known as base station (BS) - typically experience a low signal-to-interference-plus-noise-ratio (SINR), which leads to considerably low achievable throughputs and data rates. Increasing the BS transmit power in an attempt to improve the cell-edge users' experience is typically limited by the anticipated of inter-cell-interference (ICI) among the adjacent cells. Hence, the need for smart solutions is crucial to deal with this issue. Another issue that network operators must handle is the traffic variations throughout the network area which change in a time-geometry manner based on the daytime (i.e., day or night) and cell/area type (i.e., business, residential, entertainment ... etc). As a result, network cell resources maybe insufficient or dissipated according to the density of the area that each cell serves.

In this thesis, a new scheduling technique has been developed to increase the probability of assigning the available resource blocks (RBs) to the cell-edge users so that their achieved throughput would increase. A performance comparison with state-of-the-art schedulers indicates that our proposed scheduling mechanism leads to a significant improvement in the average throughput for cell-edge users, with petty performance regression for cell-center users. On another front, a novel load-aware, network-centric, dynamic clustering (LANCDC) algorithm is proposed to increase the system performance in loaded cell-edge areas. To the best of our knowledge, LANCDC is the first network-centric clustering algorithm that adapts to spatio-temporal variations in user-density across the network. Our simulation experiments indicate that LANCDC outperforms state-of-the-art user-centric algorithms, especially in terms of user throughput and power savings.

Contents

A	Acknowledgment			
Li	st of A	Abbrevi	iations	iii
Li	List of Tables List of Figures			
Li				
Al	bstrac	et		vii
1	Introduction			
	1.1	The Fi	ifth Generation (5G) and Cloud Computing Consolidation	1
	1.2	Proble	em Statement	2
	1.3	Motiva	ation	2
	1.4	Aims	and Objectives	3
	1.5	Contri	butions	3
	1.6	Thesis	S Overview	4
2	The	Fifth G	Generation New Radio (5G-NR)	5
	2.1	Introd	uction	5
	2.2	Histor	у	6
		2.2.1	The first generation "1G"	7
		2.2.2	The second generation "2G"	7
		2.2.3	The third generation "3G"	8
		2.2.4	The fourth generation "4G"	8
	2.3	The Fi	ifth Generation (5G) Technologies	8
		2.3.1	New Spectrum	9
		2.3.2	Millimeter Waves	9
		2.3.3	Carrier Aggregation (CA)	9

		2.3.4	Massive Multiple-Input-Multiple-Output (MIMO) .		10	
		2.3.5	Cloud Computing		10	
	2.4	Summ	nary		11	
3	Clou	Cloud Computing Technology 1				
	3.1	Cloud	Computing Overview		12	
		3.1.1	Cloud Computing Essential Characteristics		13	
		3.1.2	Cloud Service Models		15	
		3.1.3	Cloud Deployment Models		15	
	3.2	Summ	nary		16	
4	5G I	Networ	k Cloudification		17	
	4.1	Introd	uction		17	
	4.2	The N	eed for Cloud Computing in 5G Architecture		17	
	4.3	C-RA	N: 5G/Cloud Powerful Integration		20	
	4.4	C-RA	N Challenges		24	
	4.5	Summ	nary		25	
5	A N	ovel Scl	heduling Technique for Improving Cell-edge perform	ance	,	
	in 50	G Syste	ems		27	
	5.1	Introd	uction		27	
	5.2	Relate	ed Work		28	
	5.3	Edge l	User Friendly Scheduler (EUFS)		34	
	5.4	Need	for the Cloud		40	
	5.5	Experi	imental Setup		40	
	5.6	Result	s and Analysis		43	
		5.6.1	Assessing the Initial Scaling Factor		43	
		5.6.2	Assessing the Throughput		46	
		5.6.3	Assessing the SNR		50	
		5.6.4	Assessing the Fairness		51	
		5.6.5	Assessing the Execution Time		53	
	5.7	Summ	nary		53	
6	A N	ovel Au	tomated Clustering Technique for Increasing User Th	rou	gh-	
	put	in 5G C	Cellular Systems		55	
	6.1	Introd	uction		55	
	6.2 Background				57	
		6.2.1	Tidal Effect		57	
		622	Clustering Basics		58	

		6.2.3 Coordinated multi-point (CoMP)	58
	6.3	Related Work	59
		6.3.1 Network-Centric Clustering	60
		6.3.2 User-Centric Clustering	60
		6.3.3 Contribution of This Work	63
	6.4	Load-Aware, Network-Centric, Dynamic Clustering (LANCDC)	
		Algorithm	63
	6.5	Need for the Cloud	68
	6.6	Experimental Setup	69
	6.7	Results and Analysis	72
		6.7.1 Assessing the user connectivity status	72
		6.7.2 Assessing the Throughput	73
		6.7.3 Assessing the total BS power dissipation	74
	6.8	Summary	75
7	Con	clusion and Future Work	76
	7.1	Conclusion	76
	7.2	Future Work	77
Li	st of l	Published Papers	7 9
Re	eferen	ces	80
Aı	Arabic Abstract		