

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

MICROPROPAGATION OF SOME INDOOR ORNAMENTAL PLANTS

By

REDA MOHAMED ABD EL BASET

B.Sc. Agric. Sci. (Horticulture), Fac. Agric., Ain Shams University, 2002 M.Sc. Agric. Sc. (Ornam., Medic. and Aroma. Plant), Fac. Agric., Ain Shams Univ., 2009

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences (Ornamental, Medicinal and Aromatic Plants)

Department of Horticulture Faculty of Agriculture Ain Shams University

2020

Approval Sheet

MICROPROPAGATION OF SOME INDOOR ORNAMENTAL PLANTS

By

REDA MOHAMED ABD EL BASET

B.Sc. Agric. Sci. (Horticulture), Fac. Agric., Ain Shams University, 2002 M.Sc. Agric. Sc., (Ornam., Medic. and Aroma. Plants), Fac. Agric., Ain Shams Univ., 2009

This thesis for PH.D. degree has been approved by:

Dr. Emam Mohamed Saber Nofal Prof. Emeritus of Ornamental Plants, Faculty of Agriculture, Kafr El sheikh University. Dr. Mostafa Hassan El-Sherif Prof. Emeritus of plant Physiology, Faculty of Agriculture, Ain Shams University. Dr. Sohair El-Sayed Mohamed Hassan Prof. Emeritus of Ornamental, Medicinal and Aromatic Plants, Faculty of Agriculture, Ain Shams University.

Date of Examination: 26 /12 / 2020

MICROPROPAGATION OF SOME INDOOR ORNAMENTAL PLANTS

By

REDA MOHAMED ABD EL BASET

B.Sc. Agric. Sci. (Horticulture), Fac. Agric., Ain Shams University, 2002 M.Sc. Agric. Sc. (Ornam., Medic. and Aroma.Plants), Fac. Agric., Ain Shams Univ., 2009

Under the supervision of: Dr. Sohair El-Sayed Mohamed Hassan

Prof. Emeritus of Ornamental Plants, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Mohammed Hewidy Mahmoud Ramadan

Lecturer of Ornamental, Medicinal and Aromatic Plants, Horticulture Dept., Faculty of Agriculture, Ain Shams University.

Dr. Faisal Mohamed Abdel-Aleam Saadawy

Head Researches Emeritus, Ornamental Plants and Landscape
Design Research Department, Horticulture Research Institute,
Agricultural Research Center.

ABSTRACT

REDA MOHAMED ABD EL BASET: MICROPROPAGATION OF SOME INDOOR ORNAMENTAL PLANTS. Unpublished M.Sc. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2020.

These experiments were carried out in the Tissue Culture Laboratory, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt during the period from 2015 to 2017, to investigate some factors affecting the micropropagation of 2 indoor ornamental plants *Alocasia amazonica* and *Epithelantha micromeres* by tissue culture.

The first plant: Alocasia amazonica

Experiment 1: Multiplication: the use of 3 ppm BAP: had the highest number of shoots. 2 ppm Kinetin: got the highest values for shoot length, shoot fresh weight and number of roots.

Experiment 2: Agar substitutes and sugar availability: potato with sugar had the highest degree for all studied characters, i.e. Number of shoots, shoot fresh weight, shoot length, number of leaves, number of roots, root fresh weight and root length.

Experiment 3: Effect of auxin type and concentration and their interaction on rooting, at 2 ppm IBA: acquired the highest number of shoots, number of leaves and number of roots. The use of 3 ppm IBA: got the highest number of shoots, number of leaves and number of roots.

Experiment 4: Acclimatization: Perlite+peatmoss: had the heaviest plant fresh weight and number of roots, while peatmoss achieved the highest value for plant fresh weight.

The second plant: *Epthelantha micromeris*: Experiment 5: soaking seeds in GA₃ at 1000 ppm for 20 min resulted in higher percentage of germination compared to soaking in a distilled water.

Experiment 6: Multiplication: BAP at 2-3 ppm obtained the greatest number of shoots and heavest cluster fresh weight. Kinetin at 3 ppm also achieved the highest number of shoots

Experiment 7: Vetrification: Agar at 11 g/l without coal achieved the lowest vetrification%.

Experiment 8: Rooting: the use of NAA at 2 ppm: got the first rank concerning number of roots, root fresh weight, shoot length and plant fresh weight.

Experiment 9: Acclimatization: Perlite, perlite+peatmoss: achieved the highest rank for number of roots and root length. Peatmoss: obtained the greatest records for plant fresh weight and plant length.

LIST OF ABBREVIATIONS

Abbreviation: Meaning of abbreviation

BA, BAP : Benzyl adenine

cm : Centimeter (s)

Conc. : Concentration (s)

Fig. : Figures

g : Gram (s)

IBA : Indole-3-butyric acid

l : Litre

mg/g : Milligram / gram

MS : Murashige and Skoog medium

NAA : Naphthalene acetic acid

No. : Number

Pl. : PLATES

Ppm : Part per milion

Tot. Chl. : Total chlorophyll

ACKNOWLEDGMENTS

First of all my obedience, devotion, deepest thanks and praise are due and fully extended-as always to *Allah*, who has created us and bestowed upon us a lot of blessings which we cannot enumerate and thank enough.

This work is dedicated to the soul of my Father may Allah be merciful to him.

I would like to express my gratitude to **Prof. Dr. Sohair El-Sayed Mohamed** Professor of Ornamental, Faculty of Agriculture, Ain Shams University, for suggesting the current study, his supervision, valuable guidance, kind support, continuous help during the whole work and revision of this manuscript.

Deep thanks to **Dr. Mohammed Hewidy Mahmoud Ramadan** Lecturer of Ornamental, Faculty of Agriculture, Ain Shams University, for her supervision, scientific guidance and sincere intentions.

I would like to thank and show my sincere appreciation to **Dr. Faisal Mohamed Abdel-Aleam Saadawy** Researcher in the Horticulture Research Institute (HRI), Agriculture Research Center, Giza, for his supervision, constant encouragement, scientific remarks, following up during all stages of laboratory work, patience and the great efforts in the preparation of this thesis.

Gratitude is also offered to all the staff member and fellow colleagues of the Department of Horticulture, Agriculture Faculty, Ain Shams University, Also all members of the tissue culture laboratory in the Horticulture Research Institute (HRI), Agriculture Research Center, Giza, for their cooperation and assistance.

I am particularly appreciative to all members of my family for their moral support, understanding and repeated prayers.

CONTENTS

	Page
TITLE	I
ABSTRACT	II
ACKNOWLEDGMENT	III
LIST OF CONTENTS	IV
LIST OF TABLES	VII
LIST OF PLATES	XI
LIST OF ABBREVIATIONS	X
1.INTRODUCTION	1
2.REVIEW OF LITERATURE	8
2.1. Multiplication : BAP and Kin	8
2. 2. Agar substitutes	10
2.3. Vetrification or hyperhydricity	12
2.4. Rooting	12
2.5. Acclimatization	13
2.5.1. Peat moss	13
2.5.2. Perlite	14
2.5.3. Peat moss and perlite	15
3. MATERIALS AND METHODS	18
3.1. The first plant : Alocasia amazonica	18
3.1.1. Exp.1: Effect of cytokinin concentration and type on	
multiplication stage of Alocasia x amazonica	18
3.1.2. Exp.2: Effect of agar substitutes on multiplication stage of	
Alocasia x amazonica	18
3.1.3. Exp.3: Effect of auxin type and concentration on rooting of	

shoots of Alocasia x Amazonica	19
3.1.4. Exp.4:Effect of potting media on Acclimatization of	
Alocasia x Amazonica	19
3.2. The second plant: <i>Epithelantha micromeris</i>	19
3.2.1. Exp.5: seed germination	20
3.2.2. Exp.6:Effect of cytokinin type and concentration on multiplication	on
stage of Epithelantha micromeris	20
3.2.3. Exp.7:Effect of charcoal availability and agar concentration on	
vetrification stage of Epithelantha micromeris	20
3.2.4. Exp.8:Effect of auxin type and concentration on rooting of shoot	t
of Epithelantha micromeris	21
3.2.5.Exp.9:Effect of potting media on acclimatization of <i>Epithelantha</i>	!
micromeris	21
4. RESUTS	22
4.1. In vitro propagation of: Alocasia x amazonica	22
4.1.1.Exp.1: Effect of cytokinin concentration and type on multiplication	on
stage of Alocasia x amazonica	22
4.1.1.1. On shoots number	22
4.1.1.2. On shoot length	23
4.1.1.3. On shoot fresh weight	24
4.1.1.4. On number of leaves	25
4.1.1.5. On number of roots	26
4.1.1.6. On total chlorophyll content	27
4.1.2.Exp.2: Effect of Agar substitutes on multiplication stage of	
Alocasia x amazonica	28
4.1.2.1. On number of shoots	28
4.1.2.2. On shoot fresh weight (g)	29

4.1.2.3. On shoot length (cm)	30
4.1.2.4. On number of leaves	31
4.1.2.5. On number of roots	32
4.1.2.6. On root fresh weight (g)	33
4.1.2.7. On root length (cm)	34
4.1.3.Exp.3: Effect of auxin type and concentration on rooting of	
shoots of <i>Alocasia</i> × <i>Amazonica</i>	35
4.1.3.1. On number of shoots	35
4.1.3.2. On shoot fresh weight (g)	36
4.1.3.3. On shoot length (cm)	37
4.1.3.4. On number of leaves	38
4.1.3.5. On number of roots	39
4.1.3.6. On root fresh weight	40
4.1.3.7. On root length (cm)	41
4.1.3.8. On total chlorophyll content	42
4.1.4.Exp.4: Effect of potting media on Acclimatization of	
Alocasia×Amazonica	43
The Second plant: Epithelantha micromeris	44
4.2. In vitro Propagation of Epithelantha micromeris	44
4.2.1.Exp.5: Seed germination:	44
4.2.2. Exp.6:Effect of cytokinin type and concentration on multiplication	on
stage of Epithelantha micromeris Multiplication.	44
4.2.2.1. On number of shoots	44
4.2.2.2. On shoot fresh weight (g)	45
4.2.2.3. On cluster fresh weight (g)	47
4.2.2.4. On shoot length (cm).	47
4.2.2.5. On number of roots	48

4.2.3.Exp.7:Effect of charcoal availability and agar concentration	
on vetrification stage of Epithelantha micromeris	49
4.2.3.1. On number of shoots	49
4.2.3.2. On shoot fresh weight (g).	50
4.2.3.3. On cluster fresh weight (g).	51
4.2.3.4. On shoot length (cm).	52
4.2.3.5. On vetrification%	53
4.2.3.6. On total chlorophyll content (mg/g fw)	54
4.2.4.Exp.8: Effect of auxin type and concentration on rooting of sho	ot
of Epithelantha micromeris	55
4.2.4.1. On number of roots	55
4.2.4.2. On root length (cm).	56
4.2.4.3. On root fresh weight (g)	57
4.2.4.4. On shoot lenght (cm)	58
4.2.4.5. On shoot fresh weight (g).	59
4.2.5. Exp.9: Effect of potting media on acclimatization of	
Epithelantha micromeris	60
5. DISCUSSION	61
5.1. Effect of GA ₃ on Seed Germination	62
5.2. Multiplication: BA and Kintin	62
5.2.1. On number of shoots	62
5.2.2. On shoot length	64
5.2.3. On number of shoots and shoot length	64
5.3. Comparison Between BA and Kinetin	65
5.3.1. On number of shoots, shoot length and number of leaves	65
5.3.2. On photothynthesis pigments	66
5.4 Agar Substitutes	66