

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Impact of Hemodialysis Time Prolongation on Blood Pressure Control

A Thesis

Submitted for partial fulfillment of Master degree in Nephrology

By

Heba Soliman Mohammed SolimanM.B.B.Ch

Under Supervision of

Prof. Dr. Magdy Mohammed Saed El-Sharkawy

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Nahla Mohamed Teama

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Reem Mohsen El-Sharabasy

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

2020

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work,

My deepest gratitude **Prof. Dr. Magdy Mohammed Saed El-Sharkawy,** Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Dr. Nahla Mohamed Teama**, Lecturer of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, and her patience in reviewing and correcting this work.

I must express my deepest thanks to **Dr. Reem Mohsen El-Sharabasy,** Lecturer of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for guiding me throughout this work and for granting me much of her time. I greatly appreciate her efforts.

Special thanks to my **Parents**, my **Husband** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

Meha Soliman Mohammed Soliman

List of Contents

Subject Page No	Э.
List of Abbreviations	. i
List of Tablesi	V
List of Figures	vi
Introduction	1
Aim of the Work	3
Review of Literature	
Epidemiology & pathogenesis of Hypertension in Hemodialysis population	4
Management of hypertension in hemodialysis population	6
Dialysis intensification5	0
Patients and Methods7	3
Results7	7
Discussion 11	1
Summary12	3
Conclusion and Recommendations12	7
References 12	9
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ACEI : Angiotensin converting enzyme inhibitor

ADMA : Asymmetric dimthylarginine

Ag II : Angiotensin

AMBP : Ambulatory blood pressure Monitoring

ANP : Atrial natriuretic peptide

ARB : Angiotensin receptor blockers

ASH : American Society of Hypertension

ASN : American Society of Nephrology

AVF : Artrio-venous fistula

AVG : Artrio-venous Graft

BB : Beta blocker

BNP : Brain natriuretic peptide

BP : Blood pressure

Ca-P : Calcium Phosphate Product

CBC : Complete Blood Count

CCB : Calcium channel blocker

CRIC : Chronic Renal Insufficiency Cohort

CRP : C-reactive protein

CVD : Cardiovascular disease

DASH: The Dietary Approach to Stop Hypertension

DBP : Diastolic blood pressure

DHB-CCB: Dihyropyridines calcium channel blocker

DM: Diabetes

DOPPS: Dialysis Outcomes and Practice Pattern

DW: Dry weight

ECF : Extra cellular Fluid

ECV : Extra cellular volume

ED : Endothelial dysfunction

EG-NICE: Egyptian Nephrology Initiative of Care and Excellency

EPO : Erythropoietin

ERA-EDTA: European Renal Association- European

Dialysis and Transplant Association

ERA-EDTA: The European Renal Association-European

Dialysis and Transplantation Association

ESA : Erythropoietin stimulating agents

ESH : European Society of Hypertension

ESRD : End stage renal disease

EURE-CA-m: European Renal and Cardiovascular medicine

FHN: Frequent Hemodialysis Network

HBG: Hemoglobin

HCV: Hepatitis C Virus

HD : Heamodialysis

HDF : Hemodiafitration

HF : Heart failure

HTN: Hypertension

IDH : Intradialytic hypotension

IDWG: Interdialytic weight gain

K : Potassium

KDIGO: Kidney Disease Improving Global Outcomes

LV : Left ventricle

LVH : Left ventricular hypertrophy

MBD : Mineral bone disease

MRA : Mineralocorticoid receptor antagonists

MRI : Magnetic resonance imaging

MSNA : Skeletal muscle Sympathetic Nerve activity

Na : Sodium

NKF-KDOQI: National Kidney Foundation- Kidney Diseases

Outcome Quality Initiative

NO : Nitric Oxide

OSA : Obstructive Sleep Apnea

PCR: Polymerase Chain Reaction

PLT: Platelets

PRA : Plasma renin activity

PTH : Parathormone

PWV : Pulse wave velocity

RAAS : Renin- Angiotensin - Aldosterone System

SBP : Systolic blood pressure

SD : Standard deviation

SNS : Sympathetic nervous system

SPSS : Statistical package for social science

TT : Treatment time
UF : Ultrafiltration

UFR : Ultrafiltration rate

URR : Urea Reduction ratio

USRSD: United States Renal System Data

VEGF : Vascular endothelial growth factor

WBC: White blood cell

List of Tables

Table No.	Title	Page No.
Table (1):	Comparison between groups as redemographic data.	_
Table (2):	Comparison between groups as re etiology of ESRD	
Table (3):	Comparison between groups as reurea reduction ratio (URR %) over study period	er the
Table (4):	Comparison between study group control group as regard s phosphate level.	erum
Table (5):	Comparison between groups as reaverage lab results over the period	study
Table (6):	Comparison between groups as re UF volume.	•
Table (7):	The effect of HD session on (mmHg) in study group (A)	· -
Table (8):	The effect of HD session on (mmHg) in control group (B)	
Table (9):	Comparison between groups as repredialysis SBP (mmHg)	•
Table (10):	Comparison between groups as repostdialysis SBP (mmHg)	
Table (11):	Comparison between groups as rethe effect of HD session on (mmHg)	SBP

Table (12):	The effect of HD session on DBP (mmHg) in group A.	98
Table (13):	The effect of HD session on DBP in group B.	100
Table (14):	Comparison between groups as regard predialysis DBP (mmHg).	102
Table (15):	Comparison between groups as regard postdialysis DBP (mmHg)	104
Table (16):	Comparison between groups as regard mean difference before and after session in diastolic blood pressure (mmHg)	106
Table (17):	Drug intake during follow up period in both groups	107
Table (18):	Comparison between study group and control group according to complications observed during sessions	110

List of Figures

Figure No.	Title	Page No.
Figure (1):	Pathophysiology of hypertension	9
Figure (2):	Oxidative stress has been implication in the pathophysiology of recardiovascular disorders including hypertension	nany Iding
Figure (3):	Relationship between hyperter and obstructive sleep apnea	
Figure (4):	Causes of increased oxidative s in hemodialysis patients	
Figure (5):	Oxidative stress induced endoth dysfunction	
Figure (6):	Weekly average intradialytic system blood pressure (SBP) de haemodialysis with low and dialysate sodium (Na) by randomiz sequence (group 1)	uring high ation
Figure (7):	Comparison between groups as revascular access (frequency)	•
Figure (8):	Comparison between the cause renal disease in both groups	
Figure (9):	Comparison between groups as reurea reduction ratio	
Figure (10):	Comparison between study group control group as regard so phosphate level.	erum

Figure (11):	Comparison between groups as regard Ca-P product (mg/ dl) over the study period
Figure (12):	Comparison between groups as regard hemoglobin over the study period
Figure (13):	Comparison between groups as regard white blood cells over the study period
Figure (14):	Comparison between groups as regard to platelets concentration over the study period
Figure (15):	Comparison between groups as regard UF volume
Figure (16):	Comparison between pre and postdialysis as regard SBP (mmHg) in group A
Figure (17):	Comparison between pre- and postdialysis systolic blood pressure (mmHg) in control (B) group92
Figure (18):	Comparison between groups as regard predialysis SBP (mmHg)94
Figure (19):	Comparison between groups as regards postdialysis SBP (mmHg)96
Figure (20):	Comparison between pre and postdialysis DBP after 1 st & 6 th month of follow up in group A
Figure (21):	Comparison between pre- & postdialysis diastolic blood pressure (mmHg) in control (B) group 101

Figure (22):	Comparison between study group and control group according to predialysis DBP (mmHg)
Figure (23):	Comparison between study group and control group according to posdialysis diastolic blood pressure (mmHg)
Figure (24):	Bar chart between study group and control group according to medication
Figure (25):	Bar chart between study group and control group according to Ca carbonate/ acetate and renagel
Figure (26):	Bar chart between study group and control group according to recombinant erythropiotin administration/ weeks 109
Figure (27):	Bar chart between study group and control group according to complications