

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Role of MRI-DWI in Post Therapy Follow Up of Non Operable Cervical Cancer Patient

Thesis

Submitted in Partial Fulfillment of the Master Degree in **Radiology**

Presented by

Ahmed Hussein Saad Zaghloul

M.B.,B.Ch

Under Supervision of

Prof. Dr. Aida Mohamed Elshibiny

Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Wafaa Raafat Ali

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine,
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Aida Mohamed**Elshibing, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Wafaa**Raafat Ali, Lecturer of Radiodiagnosis, Faculty
of Medicine, Ain Shams University, for her sincere
efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Ahmed Zaghloul

Tist of Contents

Title	Page No.
List of Abbreviations	
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	5
Review of Literature	
Anatomy of the Cervix	6
Pathology of Cervical Cancer	20
MRI in Cervical Cancer	43
Diffusion MRI Principles	54
Patients and Methods	61
Results	68
Illustrative Cases	76
Discussion	86
Summary and Conclusion	90
References	
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
ACIP	Advisory Committee on Immunization Practices
ADC	Apparent Diffusion Coefficient
	American Society for Colposcopy and
	Cervical Pathology
CCRT	Concurrent chemoradiotherrapy
	Cervical intraepithelial neoplasia
	Chemoradiotherapy
	Computed tomography
	Dynamic Contrast Enhanced MRI
	Disease-free survival
	Deoxyribonucleic acid
	Diffusion Weighed Imaging
	U.S. Food and Drug Administration
	Fluorodeoxyglucose
	International Federation of Gynecology and
	Obstetrics
<i>GFR</i>	Glomerular filtration rate
<i>GOG</i>	Gynecologic oncology group
<i>HPV</i>	Human Papilloma Virus
<i>HS</i>	Highly Significant
	Interquartile range
<i>IV</i>	Intravenous
<i>LEEP</i>	Loop electrosurgical excision procedure
LVSI	Lymphovascular space invasion
<i>Mg</i>	Milligram
<i>Mmol</i>	Millimol
<i>MRI</i>	Magnetic Resonance Imaging
<i>NS</i>	Non significant
<i>PAP</i>	Papanicolau
<i>PET</i>	Positron emission tomography
<i>PFS</i>	Progression free survival
ROI	Region of interest

Tist of Abbreviations cont...

Abb.	Full term
DT	Dadiethorany
	Radiotherapy
S	Significant
SD	Standard deviation
<i>SPIR</i>	Spectral presaturation with inversion
	recovery
<i>VEGF</i>	Vascular endothelial growth factor
VIA	Visual inspection with acetic acid

Tist of Tables

Table No.	Title	Page No.
Table 1:	International Federation of Gynecol Obstetrics (FIGO) 2009 and 2018 St Carcinoma of the Cervix	taging of
Table 2:	Approach to cervix cancer by stage *.	40
Table 3:	Description of personal and characteristics of study cases	
Table 4:	Description of pre-treatment MRI fir study cases	-
Table 5:	Description of post treatment MRI fi	_
Table 6:	Comparison between pre and post tr MRI finding of study cases	
Table 7:	Correlations between pretreatment pretreatment ADC value	
Table 8:	Correlations between post treatment post treatment ADC value	

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Posterior view of the cervix, uterus, a	nd ovary7
Figure 2:	Sagittal section of the female pelvis	8
Figure 3:	Ligamentous support of the cervix	9
Figure 4:	Blood supply of the cervix	12
Figure 5:	Lymphatic drainage of the female pel-	vis16
Figure 6:	Microscopic anatomy of the cervix	18
Figure 7:	Normal MR appearance of pre menopausal cervix	
Figure 8:	Diagnostic algorithm for cervical cano	er 35
Figure 9:	Stage IB cervical cancer	44
Figure 10:	Stage IIB cervical cancer	45
Figure 11:	Stage IIIB cervical cancer	47
Figure 12:	Stage IV cervical cancer	48
Figure 13:	Stage IIB cervical cancer	51
Figure 14:	Ovarian cancer recurrence	52
Figure 15:	Stage IIB cervical cancer	53
Figure 16:	Schematic illustration of water movement	
Figure 17:	Descriptive of tumour size	73
Figure 18:	Descriptive of ADC value	73
Figure 19:	Correlations between pretreatment pretreatment ADC value	
Figure 20:	Correlations between post treatment post treatment ADC value	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 21:	Pre treatment MR images (case 1)	76
Figure 22:	Post treatment MR images (case 1)	77
Figure 23:	Pre treatment MR images (case 2)	78
Figure 24:	Post treatment MR images (case 2)	79
Figure 25:	Pre treatment MR images (case 3)	80
Figure 26:	Post treatment MR images (case 3)	81
Figure 27:	Pre treatment MR images (case 4)	82
Figure 28:	Post treatment MR images (case 4)	83
Figure 29:	Pre treatment MR images (case 5)	84
Figure 30:	Post treatment MR images (case 5)	85

Introduction

Cervical cancer is the fourth most common cancer in women worldwide (*Ferlay et al.*, 2015).

Nearly 80% of cervical cancers occur in the developing countries and most patients are diagnosed with the disease at an advanced stage, thus not suitable for surgical staging. Therefore cervical cancer usually remains a clinically staged disease (*Odicino et al.*, 2007).

Previously, clinical staging of cervical cancer relied on pelvic examination and several other simple radiologic examinations according to the International Federation of Gynecology and Obstetrics (FIGO) (*Bermudez et al.*, 2015).

In 2018, clinical staging of cervical cancer underwent a major revision by FIGO. Radiologic examinations such as magnetic resonance imaging (MRI) are allowed to be combined into clinical staging where available (*Bhatla et al.*, 2018).

With advances in MR techniques, DWI is widely included as a routine sequence in many imaging protocols, including the female pelvis. The clinical application of DWI to cervical cancer has been investigated in many studies. Previous studies demonstrated that ADC value could be useful for differentiating cervical cancer from normal cervix especially in early stages as well as for prediction of the degree and histological type of cervical cancer (*Kuang et al.*, 2013).

If poor treatment response to chemoradiotherapy can be reliably predicted, this information could be effectively used in changing therapeutic strategies to avoid toxicity or negative side effects of ineffective therapy. Furthermore, if pretreatment imaging was able to identify patients at high risk for disease recurrence before CRT, better treatment could be accomplished by conducting more intensive follow-ups or considering a choice of clinical trials (Thoeny et al., 2010).

Imaging of local spread (e.g. involvement of the myometrium/vagina bladder, rectum, and parametrium), depth of cervical stromal invasion, and the detection of lymph node involvement still remains challenging, yet are considered crucial for determination of an appropriate effective management plan. For the evaluation of the International Federation of Gynecology and Obstetrics (FIGO) staging, MRI has been shown to be accurate. A systematic review of 57 single-institution studies showed a sensitivity of 74% for detecting parametrial invasion and 75% for both detecting bladder and rectal invasion. Several recent studies even showed sensitivity values up to 100% for the detection of parametrial infiltration, vaginal infiltration, tumor extension to the stroma, urinary bladder invasion, and rectal invasion (Dhoot et al., 2012).

MR techniques including DWI are used as a routine imaging protocol for the female pelvis (Sala et al., 2010). The additional role of diffusion-weighted imaging (DWI) in uterine introduced cervical improve cancer has been to

characterization, detection and verification of extent of local invasion (McVeigh et al., 2008).

For patients with locally advanced cervical cancer, concurrent chemoradiotherapy (CCRT) is currently considered the standard treatment modality. The addition of chemotherapy to the radiotherapy regimen for patients with cervical cancer has been shown to improve survival but at the expense of increased complications and morbidity. Thus, an early and reliable indicator of therapeutic response would be of value in the management of patients with locally advanced cervical cancer (Kim et al., 2013).

In DWI, the diffusion capacity of tissues can be quantitatively measured, through a parameter that is called the apparent diffusion coefficient (ADC). In tissues with a normal cellularity (most healthy soft tissues) or low cellularity (fluids), there is enough extracellular space and water protons can diffuse relatively freely. This random Brownian movement of water protons causes a signal loss on diffusion-weighted images. In tissues with increased cellularity (tumor), the extracellular space is limited and the movement of water protons is restricted. As a result, the signal on DWI is high. Because DWI suppresses the signal in normal tissues, the high signal of malignant tissues stands out, which renders DWI a highly promising tool for detection of malignant tissues at early stages (*Park et al.*, 2013).