

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

PULMONARY FUNCTION BEFORE AND AFTER SURGICAL CORRECTION OF SCOLIOSIS

Thesis

Submitted for Partial Fulfillment of Master Degree
In Chest Diseases

Reham Mohamed Mohamed Elamir (M.B.,B.Ch.)

Supervised by

Prof. Dr. Mona Mansour Ahmed

Professor of Chest Diseases
Faculty of Medicine - Ain Shams University

Prof. Dr. Hesham Atef Abdel Halim

Professor of Chest Diseases Faculty of Medicine - Ain shams University

> Faculty of Medicine Ain Shams University

> > 2021

List of Contents

Title		Page
•	List of Abbreviations	. I
•	List of Tables	. II
•	List of Figures	. III
•	Introduction	. 1
•	Aim of the Study	. 3
•	Review of Literature	
	- Chapter (1): Anatomy of spine	. 4
	- Chapter (2): Scoliosis	. 11
	- Chapter (3): Pulmonary function tests	. 22
•	Patients and Methods	. 50
•	Results	. 54
•	Discussion	. 62
•	Summary	. 69
•	Conclusion and Recommendations	. 71
•	References	. 73
•	Arabic Summary	,

List of Abbreviations

List of Tables

Table No.	Title Page	
Table (I):	Lung volumes and capacities23	
Table (1):	Descriptive Statistics	
Table (2):	Sex of patients 55	
Table (3):	FVC% changes before and after operation	
Table (4):	VC% changes before and after operation	
Table (5):	FEV1% changes before and after operation	
Table (6):	FEF25-75% changes before and after operation	
Table (7):	Cobb angle before and after operation	
Table (8):	Correlation between cobb angle and FVC, VC% before surgery	

List of Figures

Figure No.	Title Page
Fig. (1):	Body planes5
Fig. (2):	Anatomy of vertebral column8
Fig. (3):	Anatomy of thoracic cage 10
Fig. (4):	Thoraco lumber scoliosis 12
Fig. (5):	Adam's forward bending test 17
Fig. (6):	Cobb angle
Fig. (7):	Static lung volumes and capacities based on a volume–tim spirogram of an inspiratory vital capacity
Fig. (8):	Flow time curve. Forced vital capacity, forced expiratory volume 1 maneuvers
Fig. (9):	Normal maximal expiratory and inspiratory flow-volume curve
Fig. (10):	Some problematic examples compared with well-performed maneuver
Fig. (11):	Normal flow volume loop41
Fig. (12):	Schematic diagram illustrating idealist shapes of flow-volume curves of normal, obstructive and restrictive pattern
Fig. (13):	Flow volume curve illustrating the shape of variable intrathoracic, extrathoracic obstruction and fixed obstruction

List of Figures (continued)

Figure No.	Title	Page
Fig. (14):	Spirolab III spirometer	51
Fig. (15):	Female and male percentage	55
Fig. (16):	FVC% changes before and after operation	
Fig. (17):	VC% changes before and after operation	
Fig. (18):	FEV1% changes before and after operation	
Fig. (19):	FEF25-75% changes before and after operation	
Fig. (20):	Cobb angle before and after operation	

INTRODUCTION

three-dimensional Scoliosis is deformative a abnormality of the spine. Approximately 85% of cases are idiopathic (Johari et al., 2016). Based on the age of presentation, scoliosis is further categorised as infantile, juvenile or adolescent idiopathic. Adolescent idiopathic scoliosis (AIS), which accounts for the majority of the three categories, presents at age ten and lasts till the end of growth (Tsiligannis et al., 2012). Its prevalence is dependent on the curvature of the spine and gender of the patient, and is higher among females, who have been observed to have more severe curvature (Cza prowski et al., 2012).

There is substantial interest in the relationship between spinal deformity and pulmonary function due to the potentially high rates of morbidity and mortality when progressive scoliosis results in pulmonary impairment. Decreasing pulmonary function is a major concern in progressive severe scoliosis. Once documented, the progression of scoliosis needs to be addressed to arrest thoracic cage deformity and concomitant pulmonary compromise (*Davidson et al.*, 2012).

Thoracic cage deformity can arise intrinsically from fused ribs and/or secondarily from the curvature, rotation and shortening of the thoracic spine. Severe thoracic cage distortion leads to extrinsic restrictive lung disease from the diminution of lung volume under the convex rib hump and on the concave side, where the ribs impinge on the lung (Negrini et al., 2014). Thoracic cage deformity often accompanies spine deformity in patients with AIS. The deformed structures compress the lung parenchyma, causing a decrease in lung volume and compliance. These changes, along with the increased effort to breathe, may result in alveolar hypoventilation, hypercapnia and hypoxaemia. Due to hypoxaemia and vascular bed restriction, pulmonary hypertension follows, leading to cor pulmonale and right-sided heart failure (Johnston et al., 2011).

Previous studies have indicated that severe scoliosis leads to poor pulmonary function. Since poor pulmonary function may lead to a higher incidence of postoperative pulmonary complications, preoperative pulmonary function tests (PFTs) have commonly been used to predict postoperative pulmonary complications (*Lee et al.*, 2014).

AIM OF THE STUDY

Our study aimed to evaluate the effect of scoliosis correction operation on the pulmonary functions.

CHAPTER (1) ANATOMY OF SPINE

In order to understand problems related to scoliosis it is essential that there be a basic understanding of normal structure of the spine and thorax.

When describing the body in three dimensional space, the planes are defined as in figure .The median plane divides the body into left and right halves. Any plane parallel to this is called a sagittal plane. The vertical plane normal to the sagittal plane is coronal plane. It divides the body into anterior and posterior. At right angles to both these planes is the horizontal or transverse plane that divides the body into upper and lower portions (*Grimshaw et al.*, 2007).

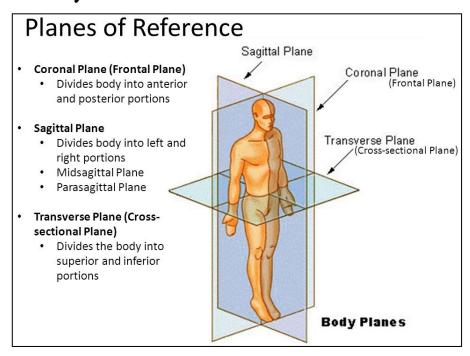


Fig. (1): Body planes

The vertebral column is the central bony pillar of the body. It supports the skull, pectoral girdle, upper limbs, and thoracic cage and, by way of the pelvic girdle, transmits body weight to the lower limbs. Within its cavity lie the spinal cord, the roots of the spinal nerves, and the covering meninges, to which the vertebral column gives great protection. The adult vertebral column usually consists of 33 vertebral segments.

Each presacral segment (except the first two cervical) is separated from its neighbor by a fibro cartilaginous intervertebral disc. The usual number of vertebrae is 7 cervical, 12 thoracic, 5 lumbar, 5 sacral and 4 coccygeal (*Bruce*, 2020).

Curves of the Vertebral Colum:

Curves in sagittal plane

In the fetus, the vertebral column has one continuous anterior concavity. As development proceeds, the lumbosacral angle appears.

After birth, when the child is able to raise his or her head and keep it poised on the vertebral column by muscular activity, the cervical part of the vertebral column becomes concave posteriorly.

Toward the end of the first year, when the child begins to stand upright as the result of muscular activity, the lumbar part of the vertebral column becomes concave posteriorly.

The development of these secondary curves results in a modification in the shape of the vertebral bodies and the intervertebral discs.

In the adult in the standing position the vertebralcolumn therefore exhibits in the sagittal plane the following regional curves: cervical, posterior concavity thoracic, posterior convexity; lumbar, posterior concavity; and sacral, posterior convexity.

During the later months of pregnancy, with the increase in size and weight of the fetus, women tend to increase the posterior lumbar concavity in an attempt to preserve their center of gravity.