

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

ESTIMATION OF GENETIC TRENDS IN SOME PRODUCTIVE TRAITS OF A ZARAIBI GOAT FLOCK USING QUANTITATIVE AND MOLECULAR GENETIC METHODS

By

RASHA MOHAMMED MOHAMMED AHMED

B.Sc. Agric. Sci., (Animal Prod.), Fac. Agric., Ain Shams University, 2004 M.Sc. Agric. Sci., (Animal Nutrition), Fac. Agric., Ain Shams University, 2011

A Thesis Submitted in Partial Fulfillment Of the Requirement for the Degree of

in
Agricultural Sciences
(Animal Breeding)

Department of Animal Production Faculty of Agriculture Ain Shams University

Approval Sheet

ESTIMATION OF GENETIC TRENDS IN SOME PRODUCTIVE TRAITS OF A ZARAIBI GOAT FLOCK USING QUANTITATIVE AND MOLECULAR GENETIC METHODS

By

RASHA MOHAMMED MOHAMMED AHMED

B.Sc. Agric. Sci., (Animal Prod.), Fac. Agric., Ain Shams University, 2004 M.Sc. Agric. Sci., (Animal Nutrition), Fac. Agric., Ain Shams University, 2011

This thes	as for Ph.D. Sc. degree has been approved by:
Prof.	Attia Nigm Emeritus of Animal Breeding, Faculty of Agriculture, Cair ersity.
Prof.	elhalem Anis Ashmawy Emeritus of Animal Breeding, Faculty of Agriculture, Ains University.
Prof.	al Mohamed Ahmed Sayed
Prof.	ein Mostafa Kamal Mansour Emeritus of Animal Breeding, Faculty of Agriculture, Ains University & Chairman of National Food Safety Authority

Date of Examination: 28 /11/2020

ESTIMATION OF GENETIC TRENDS IN SOME PRODUCTIVE TRAITS OF A ZARAIBI GOAT FLOCK USING QUANTITATIVE AND MOLECULAR GENETIC METHODS

By

RASHA MOHAMMED MOHAMMED AHMED

B.Sc. Agric. Sci., (Animal Prod.), Fac. Agric., Ain Shams University, 2004 M.Sc. Agric. Sci., (Animal Nutrition), Fac. Agric., Ain Shams University, 2011

Under the supervision of:

Dr. Hussein Mostafa Kamal Mansour

Prof. Emeritus of Animal Breeding, Faculty of Agriculture, Ain Shams University & Chairman of National Food Safety Authority (Principal Supervisor).

Dr. Manal Mohamed Ahmed Sayed

Prof. of animal Breeding, Department of Animal Production, Faculty of agriculture, Ain Shams University.

Dr. Mona Abdelzaher

Head Researches of Animal Breeding, Sheep & Goats Research Department, Animal Production Research Institute.

ABSTRACT

Rasha Mohammed Mohammed Ahmed. Estimation of genetic trends in some productive traits of a Zaraibi goat flock using quantitative and molecular genetic methods, unpublished doctor of science thesis, University of Ain Shams, Faculty of Agriculture, Department of Animal Production, 2021.

The aim of this study was to evaluate the impact of selection programs used for Zaraibi goat in El-Serw experimental farm of Animal Production Research Institute. Records on 13062 Zaraibi kids were collected during the period from 1988 to 2018 for body weight traits. The milk production of 1559 does during 1990-2014 was recorded at first lactation. Phenotypic selection was practiced since the original flock was entered to the farm in 1984 and starting from the year 2004 the animal breeding values were estimated and taken in consideration along the phenotypic criteria in selecting the animal for breeding.

Data were analyzed using two statistical models. The first was used to estimate the fixed effects (gender, type of birth, parity of doe, year and season of birth and interaction between same factors) on body weight traits at 4, 6 and 12 months of age. The fixed effects for total milk yield were litter size, age of doe and season and year of kidding. While the second model was used with the same fixed effects in addition to the random effect of animal for estimating genetic parameters and animal breeding values (BV).

The least squares means of body weights at M4, M6 and M12 were estimated as 12.14 ± 0.02 , 15.49 ± 0.02 and 24.08 ± 0.04 kg, respectively.

Heritability estimates of body weights at 4, 6 and 12 months of age were 0.28, 0.34 and 0.38, respectively. High positive genetic correlations were found among M4, M6 and M12.

Positive genetic trends for M4, M6 and M12 (0.091, 0.121 and 0.158 kg/year, respectively) were estimated indicating genetic

improvement in Zaraibi goat flock. The phenotypic trends were (0.020, 0.045 and 0.117 kg/year, respectively), and the environmental trend were (-0.060, -0.039 and -0.043 kg/year, respectively).

Heritability estimate for TMY was 0.19, with a positive genetic trend (0.215 kg/year) and negative environmental trend (-2.88 kg/year).

Sequencing methodology was applied for PCR products for the exon -3 region of the growth hormone gene. Result indicated one SNP, A72G was detected, which can be used as marker in selection of goat with high valued growth traits.

Key words: Selection, Genetic parameters, Growth hormone gene, Marker assisted selection, Zaraibi goat.

ACKNOWLEDGEMENTS

First and foremost, I would like to praise and thank God, the almighty, who has granted countless blessing, knowledge, and opportunity, so that I have been finally able to accomplish the thesis.

I would like to show my greatest appreciation to **Dr. Hussein Mansour,** Professor of Animal Breeding, Faculty of Agriculture, Ain Shams University as the thesis supervisor. I can't say thank him enough for his tremendous support and help. I feel motivated and encouraged every time I attend his meeting. Without his encouragement and guidance this thesis would not have materialized.

A special word of thankfulness is due to **Dr. Manal El-Sayed**, Professor of Animal Breeding, Faculty of Agriculture, Ain Shams University for her enthusiasm, insightful comments, helpful information, and practical advice.

I wish to express my sincere thanks and gratitude to. **Dr. Mona Abdel-Zaher,** Chief Researches of Animal Breeding of Sheep and Goat Research, Animal Production Research Institute, Ministry of Agriculture, for her kind supervision, help and support during this study.

I would like to thank **Dr. Ahmed Elbeltagy**, Senior Research Scientist, Animal Breeding and Genetics, Animal Production Research Institute, **Dr. Lamiaa Mostafa Kamal**, Associate Professor of Genetics, Fac. of Agric., Ain Shams Univ. and **Dr. Rania Younis** Associate Professor of Genetics, Fac. of Agric., Ain Shams Univ. for helping me in Molecular part and **Dr. Adel Aboul-Naga**, Head researches Emeritus of Animal Breeding, Sheep and Goat Breeding Research Department, Animal Production Research Institute, Agriculture Research Center, for his effort, time, helpful advices and valuable opinions.

I will, forever, be indebted to my parents for given me unfailing support and encouragement. Special word of love goes to my sister Shimaa for helping.

I am very much thankful to my husband and my kids for their love, understanding and supporting.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1 Zaraibi goat	3
2.2 Non genetic factors affecting body weights	4
2.2.1 Season of birth	4
2.2.2 Gender of kid	5
2.2.3 Parity of doe	6
2.2.4 Type of birth	6
2.2.5 Year of birth	7
2.3 Genetic parameters for body weight traits	7
2.3.1 Heritability	7
2.3.2 Genetic correlation	9
2.3.3 Phenotypic correlation	10
2.4 Trends for body weight traits	11
2.4.1 Genetic gain for body weight traits	11
2.4.2 Phenotypic trend for body weight traits	13
2.4.3 Environmental response for body weight traits	14
2.5 Milk yield trait	15
2.5.1 Heritability of total milk yield	15
2.5.2 Genetic response for total milk yield	16
2.6 Growth hormone gene	17
3. MATERIALS AND METHODS	19
3.1 Animals and herd management	19
3.2 Studied traits	21
3.3 Statistical analysis	21
3.3.1 Body weight traits	21
3.3.2 Phenotypic trends for body weight traits	21
3.3.3 Genetic trends and genetic parameter for body weight	
traits	22
3.3.4 Environmental trends for body weight traits	23

3.3.5 Phenotypic trends for total milk yield	23
3.3.6 Genetic trends for total milk yield	24
3.3.7 Environmental trends for total milk yield	24
3.4 Blood samples	24
3.5 DNA extraction	25
3.6 Genetic polymorphism in exon-3 of the growth hormone	
gene	25
3.6.1 PCR mixture and thermal conditions	25
3.6.2 Amplicon sequencing	25
3.6.3 Single nucleotide polymorphism (SNP) detection	25
3.6.4 Statistical analysis	26
4. RESULTS AND DISCUSSION	27
4.1 Non genetic factors affecting body weight traits	27
4.1.1 Season of birth	27
4.1.2 Gender of kid	28
4.1.3 Parity of doe	29
4.1.4 Type of birth	29
4.1.5 Year of birth	29
4.2 Genetic parameters for body weight traits	30
4.2.1 Heritability	30
4.2.2 Genetic correlation	30
4.2.3 Phenotypic correlation	31
4.3 Trends for body weight traits	31
4.3.1 Phenotypic trend for body weight traits	31
4.3.2 Genetic trend for body weight traits	31
4.3.3 Environmental trend for body weight traits	32
4.4 Heritability for total milk yield	43
4.5 Trends for milk production	43
4.6 Exon -3 region of growth hormone gene	48
5. SUMMARY AND CONCLUSIONS	51
6. REFERENCES	54
7. ARABIC SUMMARY	

LIST OF TABLES

Γable No.		Page
1	Heritability (h ²) estimates for body weight traits in	
	different breeds of goat.	8
2	Estimates of genetic correlations (r _G) between some	
	body weights in different breeds of goat.	9
3	Estimates of phenotypic correlations (rp) between	
	some body weights in different breeds of goat.	10
4	Some estimates of genetic response for body weight	
	traits.	12
5	Some estimates of phenotypic response for body	
	weight traits.	13
6	Some estimates of environmental response for body	
	weight traits.	14
7	Some reviewed heritability (h ²) estimates of milk	
	yield in different breeds of goat.	15
8	Some estimates of genetic response for total milk	
	yield.	16
9	Analysis of variance for body weights at 120 days	
	(M4), 180 days (M6) and 360 days (M12) in Zaraibi	
	goat.	27
10	Least squares means (LSM) with their standard	
	errors (SE), for weights (kg) at 4-month (M4), 6-	
	month (M6) and 12-month (M12).	28
11	Heritability estimates (on the diagonal), phenotypic	
	(above the diagonal) and genetic correlations (below	
	diagonal) for body weights at 120 days, M4; 180	
	days; M6 and 360 days, M12 in Zaraibi goat.	30
12	Estimates of genetic, phenotypic and environmental	
	change (Kg/year) and their standard errors for kid's	
	body weight traits of Zaraibi goat.	33

Table No.		Page
13	Estimates of annual genetic, phenotypic and	
	environmental changes (kg/year) and their standard	
	errors and heritability for total milk yield of Zaraibi	
	goat.	43
14	The significance (p<0.0001) effect of the difference	
	between the two SNPs (G) and (A) on three	
	predicted breeding value of body weights at 4, 6, and	
	12 months	50

LIST OF FIGURES

Fig. No.		Page
1	Zaraibi flock (El-Serw Experimental Station, 2019).	3
2	Phenotypic trend for body weight at 120 days (M4)	
	in Zaraibi kids	34
3	Phenotypic trend for body weight at 180 days (M6)	
	in Zaraibi kids	35
4	Phenotypic trend for body weight at 360 days	
	(M12) in Zaraibi kids	36
5	Genetic trend for body weight at 120 days (M4) in	
	Zaraibi kids	37
6	Genetic trend for body weight at 180 days (M6) in	
	Zaraibi kids	38
7	Genetic trend for body weight at 360 days (M12) in	
	Zaraibi kids	39
8	Environmental trend for body weight at 120 days	
	(M4) in Zaraibi kids	40
9	Environmental trend for body weight at 180 days	
	(M6) in Zaraibi kids	41
10	Environmental trend for body weight at 360 days	
	(M12) in Zaraibi kids	42
11	Phenotypic trend for TMY (kg) in Zaraibi goat	45
12	Genetic trend for TMY (kg) in Zaraibi goat	46
13	Environmental trend for TMY (kg) in Zaraibi goat	47
14	Amplified PCR products of exon-3 region appeared	
	at 300 bp in Zaraibi goat	48
15	The sequence analysis of GH Exon-3 in Zaraibi	
	goat with low breeding value	48
16	The sequence analysis of GH Exon-3 in Zaraibi	
	goat with high breeding value	49