

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Association of Glycosylated Hemoglobin levels with Insulin Resistance in adolescent among medical students Ain Shams University

Chesis

Submitted for Partial Fulfillment of Master Degree in Clinical Nutrition

By

Angie Magdy Mohammed HassanMB.BCCH Cairo University [2010]

Under Supervision

Prof. Bassem Boules Ghobrial

Professor of of Anesthesisa ,Intensive Care and Pain management Faculty of medicine Ain shams University

Prof. Reem Hamdy ElKabarity

Professor of of Anesthesisa ,Intensive Care and Pain management Faculty of medicine Ain shams University

Faculty of medicine Ain shams University 2021

First of all, all gratitude is due to God almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Bassem Boules Ghobrial** Professor of of Anesthesisa ,Intensive Care and Pain management Ain shams University for his supervision, continuous help, and encouragement throughout this work.

I would like to thank **Prof.Dr.Reem Hamdy ElKabarity** Professor of of Anesthesisa ,Intensive Care and
Pain management Ain shams University, for providing her
supervision and support to accomplish the work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the work	3
Review of literature	
Chapter (1): Insulin	4
Chapter (2): Glycosylated Hemoglobin	31
Chapter (3): Glycosylated Hemoglobin and I Resistance	
Subjects and Method	47
Results	56
Discussion	69
Summary	76
Conclusion	79
Reference	80
Arabic summary	

List of Tables

Table	Mo.	Title	Page No.
Table	(1):	Methods for Assessing Insulin Sensitiv	ritv
14010		d Resistance In Humans	•
Table		Normal, prediabetic, and diabetic ranges	
		Diagnostic Standard for HbA1C	
		abetes	
Table		Comparison between normal group a	
		ver weight group according	
		mographic data	
Table		Comparison between normal group a	
		ver weight group according to HOMA-II	
Table	(6):	Comparison between normal group a	ınd
	O	ver weight group according to glucose a	ınd
	in	sulin	61
Table	(7):	Comparison between normal group a	ınd
	O	ver weight group according to HbA1c%.	62
Table	(8):	Association between HOMA-IR <2.5 a	and
	H	OMA-IR ≥2.5 according to Age (year	rs),
	Bl	MI [wt/(ht) 2], Glucose (mg/dl), Insu	ılin
	(m	nIU/ml), Waist/Hip ratio and HbA1c%	in
	no	rmal group	64
Table	(9):	Comparison between HOMA-IR <2.5 a	ınd
		OMA-IR \geq 2.5 according to Age (year	·
		MI $[wt/(ht)^2]$, Glucose (mg/dl) , Insu	
	•	nIU/ml), Waist/Hip ratio and HbA1c%	
		ver weight group	
Table	` ′	: Correlation between HOMA-IR a	
	H	oA1c% in all patients	68

List of Figures

List of Figures

Figure	e No			Titl	e		Page	Mo.
Figure		_			-	which TN	_	
		•				-	•••••	17
Figure				_		initial	_	
	re	comn	nenda	tions	•••••		• • • • • • • • • • • • • • • • • • • •	22
Figure	(3):	Bar	chart	between	normal	group a	nd Over	
	W	eight	group	accordi	ng to ago	e (years).		57
Figure	(4):	Bar	chart	between	normal	group a	nd Over	
	W	eight	group	accordi	ng to ge	nder	• • • • • • • • • • • • • • • • • • • •	57
Figure		_			•	group a		
O	` ,					•		58
Figure		_	_		_	group a		
8						•		58
Figure		_			•	and Over		
1 igui c								50
Figure	_	_		_				ر د
rigure					-	and Over	_	60
T7.	_	_		_			1.0	00
Figure	` '					group a		
		_					insulin	61
Figure						group a		
	W	eight	group	accordi	ng to Hb	A1c%	• • • • • • • • • • • • • • • • • • • •	62
Figure	(11)	: Bar	chart	between	n normal	group a	nd Over	
	W	eight	group	accordi	ng to lev	el of Hb	A1c%	63
Figure	(12)	: Ass	ociati	ion betw	een HO	MA-IR <	2.5 and	
	Н	OMA	-IR	≥2.5 ac	ccording	to gluc	ose and	
								65
				_	•			

List of Figures

Tist of Figures (Cont..)

Figure No Title	Page No.

Figure (13): Association between HOMA-IR <2.5 and	
HOMA-IR ≥2.5 according to glucose and	
insulin in Over weight group.	. 67
Figure (14): Scatter plot between HOMA-IR and HbA1c%	
in all patients.	. 68

Tist of Abbreviations

	- •
Abbr.	Full term
ACCORD	Assists Control Continues In Pint in Pint and
trial	Action to Control Cardiovascular Risk in Diabetes
AGIs	α-Glucosidase Inhibitors
BMI	Body Mass Index
EAG	Estimated Average Glucose
DCCT	Diabetes Control and Complications Trial
DPP-4	Dipeptidyl Peptidase-4
FDA U.S.	Food and Drug Administration
FSIVGTT	Frequently Sampled Intravenous Glucose Tolerance Test
GCKR	Glucokinase Regulatory Protein
GDM	Gestational Diabetes Mellitus
GI	Gastro Intestinal
GIR	Glucose Infusion Rate
GLP-1	Glucagon-Like Peptide 1
GLUT 4	Glucose Transporter 4
HDL	High Density Lipoprotein
HGBA1c	Glycated Hemoglobin
HOMA IR	Homeostatic Model Assessment for Insulin Resistance
HPL	Human Placental Lactogen
IFCCHL	International Federation of Clinical Chemistry and Laboratory Medicine
IGFBP-1	Insulin-like Growth Hormone Binding Protein-1
IGFI	Insulin Growth Factor
IRS1	Insulin Receptor 1
IST	Insulin-Suppression Test
IVGTT	Intravenous Glucose Tolerance Test
LDL	Low Density Lipo protein
NAFLD	Non Alcoholic Fatty Liver Disease
NAT2	N-AcetylTransferase 2
NGT	Normal Glucose Tolerance
OGTT	Oral Glucose Tolerance Test
PUFA	Polyunsaturated Fatty Acid Polyunsaturated Fatty acids
QUICKI	Quantitative Insulin Sensitivity Check Index
RPL	Recurrent Pregnancy Loss
SGLT2	Sodium-Glucose Cotransporter 2
SSPG	Steady-State Plasma Glucose
T1D	Type 1 Diabetes Mellitus
T2D	Type 2 Diabetes Mellitus
TG	Triglycerides
TNF	Tumor Necrosis Factor
TZDs	Thiazolidinediones
US	United States
W\H	Waist Hip Ratio

Introduction

Insulin resistance is when cells in muscles, fat, and liver don't respond well to insulin and can't easily take up glucose from blood. As a result, pancreas makes more insulin to help glucose enter cells. As long as pancreas can make enough insulin to overcome cells' weak response to insulin, blood glucose levels will stay in the healthy range. (*Marathe et al.*, 2017)

Insulin resistance is a common pathway for the development of glucose metabolism disorders and high blood pressure, all of which are components of the metabolic syndrome. (*Heianza et al.*, 2012)

The earlier onset of obesity may cause a longer period of insulin resistance, which may explain the concomitant earlier onset of impaired glucose tolerance in young Over weight people and adolescents so insulin resistance has been implicated as risk factor for metabolic disorders and it is of real importance to develop simple test that can be used in routine clinical setting for identifying insulin resistant individuals in advance so ,HOMA-IR(Homeostatic Model Assessment for Insulin Resistance) and HbA1c(glycated

haemoglobin) screening to identify young at high risk for insulin resistance and diabetes at an early stage. (*Borai et al.*, 2011)

"Screening for type 2 diabetes to reduce the lead time between diabetes onset and clinical diagnosis". (*Herman et al.*, 2015)

Major benefits are likely to occur from the early diagnosis and treatment of glycemia and cardiovascular risk factors in type 2 diabetes. The intensity of glucose, blood pressure, and cholesterol treatment after diagnosis is less important than the time of its initiation. (*Valerio et al.*, 2006)

AIM OF THE WORK

The main aim to evaluate the association of HOMA-IR (Homeostatic Model Assessment of Insulin Resistance) and HbA1c levels in overweight and non-overweight young medical students to assess insulin resistance, a condition that can cause diabetes mellitus and metabolic syndrome in earlier life.

Insulin

Insulin is a hormone that allows glucose to enter cells which also reduces blood glucose (blood sugar). Insulin is released by the pancreas in response to carbohydrates consumed in the diet. (*Deng et al.*, 2017)

Insulin resistance

Definition of insulin resistance

Insulin resistance (IR) is a pathological condition in which cells fail to respond normally to the hormone insulin, where the same amount of insulin does not have the same effect on glucose transport and blood sugar levels(*Lawson and Lawrence*, 2019)

Risk factors of insulin resistance

1-Lifestyle Factors

Dietary factors likely contribute to insulin resistance, this include foods high in sugar with high glycemic indices, high in dietary fat and fructose, low in omega-3 and fiber and hyper-palatable which increases risk of overeating. Overconsumption of fat- and sugar-rich meals and beverages have been proposed as a fundamental factor behind the metabolic syndrome epidemic. (Scinta et al., 2017)

It is hypothesized that increasing cell membrane fluidity by increasing PUFA(polyunsaturated fatty acids) concentration might result in an enhanced number of insulin receptors, an increased affinity of insulin to its receptors, and reduced insulin resistance. (Saini and Keum, 2018)

Vitamin D deficiency has also been associated with insulin resistance. (Moschonis et al., 2018)

Sedentary lifestyle increases the likelihood of development of insulin resistance. (*Fareed et al.*, 2017)

Studies have consistently shown that there is a link between insulin resistance and circadian rhythm, with insulin sensitivity being higher in the morning and lower in the evening. A mismatch between the circadian rhythm and the meals schedule, such as in circadian rhythm disorders, may increase insulin resistance. (*Jan et al.*, 2018)

2-Medications

Some medications are associated with insulin resistance including corticosteroids, protease inhibitors (type of HIV medication), and atypical antipsychotics. (*Burghardt et al.*, 2018)

3-Hormones