

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

MANAGEMENT OF WATER, ENERGY AND FOOD IN KUWAIT

(A COMPARATIVE STUDY WITH CALLIFORNIA (USA)
AND NINGXIA (CHINA))

Submitted By Hamed Abbas Eidan Abbas

License of Arts (Sociology), Faculty of Arts, Kuwait University, 2000

Master in Environmental Management, Faculty of Graduate Studies,

Arabian Gulf University, 2008

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Economics, Legal and Management Sciences Institute of Environmental Studies and Research Ain Shams University

<u>APPROVAL SHEET</u> MANAGEMENT OF WATER, ENERGY AND FOOD IN KUWAIT

(A COMPARATIVE STUDY WITH CALLIFORNIA (USA)
AND NINGXIA (CHINA))

Submitted By Hamed Abbas Eidan Abbas

License of Arts (Sociology), Faculty of Arts, Kuwait University, 2000

Master in Environmental Management, Faculty of Graduate Studies,

Arabian Gulf University, 2008

A Thesis Submitted in Partial Fulfillment

O1

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Economics, Legal and Management Sciences

This thesis was discussed and approved by:

The Committee Signature

1-Prof. Dr. Sayed Mahmoud El Sayed Al Khouly

Prof. of Business Administration Faculty of Commerce Ain Shams University

2-Prof. Dr. Amro Mohamed Awad

Prof. of Business Administration Faculty of Commerce Ain Shams University

3-Prof. Dr. Mohamd Abd El-Aaty Sayed Khalil

Minister of Irrigation and Water Resources

MANAGEMENT OF WATER, ENERGY AND FOOD IN KUWAIT

(A COMPARATIVE STUDY WITH CALLIFORNIA (USA) AND NINGXIA (CHINA))

Submitted By Hamed Abbas Eidan Abbas

License of Arts (Sociology), Faculty of Arts, Kuwait University, 2000

Master in Environmental Management, Faculty of Graduate Studies,

Arabian Gulf University, 2008

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Economics, Legal and Management Sciences Under The Supervision of:

1-Prof. Dr. Sayed Mahmoud El- Sayed Al-Khouly

Prof. of Business Administration Faculty of Commerce Ain Shams University

2-Dr. Mashary Lafi Al-Harby

Associate Prof., Department of Environmental Technology College of Life Sciences Kuwait University

سورة البقرة الآية: ٣٢

The Prophet Mohammad said: who does not thank Allah does not thank people.

To my mother and father soul. This journey would not have been possible without the support of my greiges kids, life partner, brothers, and my friends.

Also, I wish to thank my advisors, Prof. Sayed Elkhouly and Dr. Meshari Al-Harbi for their continued encouragement and support throughout the years.

And the least not last, my grateful to committee examiners, Prof. Mohammad Abd-Alati the Minister of Ministry of Water Resources and Irrigation in Arab Republic of Egypt, and Prof. Amro Awad Bossiness Administration professor at Ain-Shams University.

Abstract

With the global population growing (over seven billion), accompanied by escalating economic crises, mismanagement of natural resources, climatic changes, and uncertainties, and growing poverty and hunger, the world is opposing critical periods of serious challenges. Water, Energy, and Food (WEF) are inextricably interrelated and interdependences system. These resources utilize for meeting the socio-economic demands as well as sustainable worldwide. This research aims to quantify the linkages and trade-off for WEF nexus for the different variables include environmental, sociological, and economic drivers. also, examines several statistical analyses which include; correlation, significant (ANOVA test), multicollinearity, and stepwise analyses through utilizing JMP software. Then investigate and build-up precise policies within WEF nexus by using Intigrated Environmental Assessemnt (IEA) approach. This research also developed an integrated mathimatical dynamic model for WEF system for the entire kuwiaiti governarates under defferent scenarios and interventions altirnatives. The model has built by interlink Water Evaluation and Planning (WEAP) and Long-range Energy Alternatives Planning System (LEAP) sofwares. Finally, the research proposed a theory of change as well as build up a baseline of proactive strategy actions.

The statistical analyses concluded the WEF nexus in Kuwait is highly interlinkage. Urbanization development, population growth, and increasing temperature degrees are the most variables that affect water, electricity, and food. The gross domestic product is an indirect effect variable. On the other side, the impact of climate change on

water, energy, and food not taken seriously by the leaders in State of Kuwait. This research recomanded to conduct integrated water, energy, and food strategy embedded low and regulation to demonstrate those resources as well as adopting social behavioral policies for water, energy, and food strategy. Grant the NGOs, private sectors, and academia more financing to adopting and implementing water energy and food programs. Restructuring the electricity and water sector and establishment public utility for electricity and water. This utility operating on a commercial and competitive basis, to improve the efficiency of the service, improve performance and reduce the cost of production by allowing the private sector to participate in electricity and water projects. Finally, this research proposed an action plan in order to help disection maker as an road map for integrated strategy for WEF management.

Contents

Chapter one: Introduction	2
1.0 Preface	2
1.1 Problem Statement	3
1.2 Research significant	6
1.3 Research Aim and Objectives	7
1.4 Hypotheses	8
1.5 Methodology	8
Chapter TowLiteratures Review	11
2.0 Introduction	11
2.1 A review of the water, energy, and food nexus	11
2.2 WEF Interrelationships	16
2.2.1 Water and Energy	17
2.2.2 Water and Food	20
2.2.3 Energy and Food.	20
2.3 WEF Sustainability	21
2.3.1 Efficiency	21
2.3.2 WEF and Sustainable Development Goals	22

2.4 WEF and climate change	25
2.6 WEF strategy	26
2.7 Importance of WEF Approach	27
Chapter Three: Water, Energy, and Food Status in California,	
Ningxia, and Kuwait	29
3.0. Introduction	30
3.1 WEF in California	30
3.2 WEF in Ningxia	31
3.3 WEF status in Kuwait	
3.3.1 Water resources	32
3.3.2 Water, Energy, and Food Framework in Kuwait	43
3.3.2.1 Water – Energy Linkages	
3.3.2.2 Water – Food Linkages	
3.3.2.3 Energy – Food Linkages	
3.3.3 Impact of Climate Change on WEF in Kuwait	
3.3.4 Results and Discussion of WEF linkages in Kuwait	
Chapter four: Water, Energy, and Food Policy analyses in	
Kuwait	63
4.0 Introduction	63
4.1 Environmental Policies and Integrated Environmental	
Assessment	63
4.2 NUDGE and the Public Policy	66
4.3 Policy instruments	67
4.5 Integrated WEF Policies Analyses Steps	76
4 6Discussion	85

Chapter five: Developing an Integrated model for WEF	
system	87
5.0 Introduction	88
5.1 WEAP and LEAP	
5.2 Review of Water, Energy, Food modelling in California	and
Ningxia	
5.3 WEAP and LEAP framework for State of Kuwait	91
5.4 Assumptions and limitations	94
5.5 Calibration and Validation	96
5.6 Results and discussion	97
Business As Usual Scenario	97
Climate Change Scenario	100
Alternatives for WEF Sustainability	102
Implications	108
Chapter six: Water, Energy, and Food pro-active Strategy for	r the
State of Kuwait	111
6.0 Introduction	112
6.1 California practices	
6.2 Ningxia practices	
6.3 Theory of change for WEF Management in Kuwait	
6.4 Prospective Strategy for WEF management in Kuwait	
Chapter six: Water, Energy, and Food pro-active Strategy for	
State of Kuwait	
Summery	130
References	141
والملخص العربي	المستخلص

List of Figures

Figure 2-1: Overview of the Framework Linking WEF Security13 Figure 2-2: Global Physical and Economic Surface Water Scarcity.13	
Figure 2-3: Energy Consumption per capita by Country15	5
Figure 2-4 A diagram of a holistic WEF system16	,
Figure 2-5: Mapping Targets at the Nexus between Goal Areas24	1
Figure 2-6 Outline for a nexus-based adaptation framework26 Figure 3-1 Total rainfall & Temperature (2002-2020)	
Figure 3-2 Water Resources in 2005 & 2010	3
Figure 3-3 Water Uses in 2005 & 2010	34
Figure 3-4 Probability of rainfall return period3	35
Figure 3- 6 Brackish groundwater withdrawal3	39
Figure 3-7 Gross Consumption and Production of Fresh Water	
(1994- 2019)4	0
Figure 3- 8 Inflow and Treated Wastewater4	13
Figure 3-9 Water, Energy, and Food conceptual framework in the	
State of Kuwait4	5
Figure 3- 10 The correlation between fuel consumption and	
freshwater production	7
Figure 3- 11 Agriculture Sector resources4	19
Figure 3- 12 Consumed quantity of fuel & electricity in operating	
agricultural machines5	51
Figure 3- 13 Estimated Carbon Dioxide Emissions (CO2)5	51
Figure 3- 14 Correlation between water, energy, and food	51

Figure 4-1 DPSIR Conceptual Framework
Figure 4-2 WEF DPSIR Framework in the State of Kuwait70
Figure 4-3 Total Population and GDP71
Figure 4-4 Average Temperatures and Total Rainfall at Kuwait
Airport
Figure 4-5 The Temperatures Projections under RCP 4.5 and 8.573
Figure 4-6 Water and electricity per capita consumption in the year
2016
Figure 5-1 Conceptual linking WEAP and LEAP models90
Figure 5-2WEAP Conceptual Dynamic Model93
Figure 5-3 LEAP linkages with WEAP model94
Figure 5-4 projection of temperature during 2006-203595
Figure 5-5 Water demand predictions in the domestic and agriculture
sectors99
Figure 5-6 Predictions of electricity consumption in the domestic and
agriculture sectors99
Figure 5-7 Results of WEF management105
Figure 5-8 Comparison among intervention management106
Figure 5-9 water and electricity intervention scenarios107
Figure 5-10 Interventions scenarios in agricultural areas108
Figure 6-1 WEF theory of change120
Figure 6-2 WEF schematic strategy