

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Assessment of Extent of Myocardial Injury in Patients Undergoing Transvenous Implantation of Permanent Pacemaker using Cardiac Troponin I (cTnI) as a Marker of Structural Heart Damage and it's Relation to Different Sites of RV Implantation

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

By Mohamed Mahmoud Ali Mohamed Ramadan _{M.B.B.Ch}

Under Supervision of Prof. Dr. Hayam Mohamed El Damanhoury

Professor of Cardiology Faculty of Medicine- Ain Shams University

Prof. Dr. Haitham AbdelFattah Badran

Assistant Professor of Cardiology Faculty of Medicine- Ain Shams University

Dr. Emad Effat Fakhry

Lecturer of Cardiology
Faculty of Medicine- Ain Shams University

Faculty of Medicine - Ain Shams University Cardiology Department 2021

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Hayam Mohamed El Damanhoury**, Professor of Cardiology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr. Waitham**Abdel Fattah Badran, Assistant Professor of

Cardiology, Faculty of Medicine, Ain Shams University,

for his sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Emad Effat Fakhry**, Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for his great help, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Mohamed Mahmoud Ali Mohamed Ramadan

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	8
Introduction	1 -
Aim of the Work	3
Review of Literature	
Myocardial Injury	4
Bradycardia	8
Permanent Pacemakers	20
Patients and Methods	41
Results	44
Discussion	57
Conclusion and Recommendations	63
Summary	64
References	66
Arabic Summary	

Tist of Tables

Table No	. Title	Page No.
Table 1:	Reasons for the elevation of cardiac values because of myocardial injury	-
Table 2:	Guidelines for choice of pacemaker gen selected indications for pacing	
Table 3:	Descriptive data of age and sex	45
Table 4:	Descriptive of demographic data	45
Table 5:	Descriptive of procedural details	46
Table 6:	Descriptive of procedural details	46
Table 7:	Relationship between demographic of troponin before	
Table 8:	Relationship between demographic of troponin after	
Table 9:	Relationship between demographic of troponin increase fold	
Table 10:	Relationship of troponin in before, a increase fold	after and
Table 11:	Relationship between pacemaker impregardless site of RV lead in both greincidence of myocardial injury	oups and
Table 12:	Relationship between site of RV lead r troponein after	egarding
Table 13:	Relationship between site of RV lead r troponin increase fold	
Table 14:	Correlation between number of screw extent of myocardial injury	ving and
Table 15:	Logistic regression analysis for pred Septum	lictors of

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Spectrum of myocardial injury, from no injury to myocardial infarc	
Figure 2:	Conduction system of the heart	
Figure 3:	Parasympathetic and sym	
8	innervation of the heart: anatomy.	-
Figure 4:	An ECG strip showing sinus brad	
8 -	reproduced from	•
Figure 5:	An ECG strip showing sinus pause	
Figure 6:	Electrocardiogram of lead II show	
g	degree atrioventricular block	O
	prolonged PR interval of 0.30 sec	
Figure 7:	Single lead electrocardiogram	
8	showing Mobitz type I (Wend	
	second degree AV block	
Figure 8:	Single lead ECG showing Mobitz	
8	heart block with 2:1 conduction	
Figure 9:	A single lead ECG showing comple	
J	block, notice the complete A-V disse	
Figure 10:	Electrocardiographic (ECG)	
8	electrophysiologic features of Mob	
	II second degree atrioventricula	V -
	block	
Figure 11:	Chest X-Ray of a patient wi	
S	implanted at lt pectoral region	
Figure 12:	Frontal chest radiograph shows a	
S	chamber pacemaker with a single	•
	the right ventricle (arrow)	
Figure 13:	Frontal chest radiograph shows	
	chamber pacemaker, which has	
	the right atrium (arrowhead) ar	
	ventricle (arrow)	_

Tist of Figures cont...

Fig. No.	Title Page 1	Vo.
Figure 14:	Frontal chest radiograph shows a biventricular pacemaker with one right ventricular lead (arrowhead) and one left ventricular lead (arrow)	23
Figure 15:	Three different types of cardiac pacemakers	
Figure 16:	Lead fixation	
Figure 17:	Terminal connector pin	
Figure 18:	Chronic SND management algorithm	
Figure 19:	Management of bradycardia or pauses attributable to chronic atrioventricular	
	block algorithm	36
Figure 20:	Management of conduction disorders algorithm	
Figure 21:	Relationship between pacemaker implantation regardless site of RV lead in both groups and incidence of myocardial	
	injury	51
Figure 22:	Relationship between site of RV lead	
	regarding troponein after	
Figure 23:	Relationship between site of RV lead	
8-	regarding troponin increase fold	
Figure 24:	Correlation between number of screwing	
J	and troponin after	
Figure 25:	Correlation between number of screwing	
-	and troponin increase fold	

Tist of Abbreviations

Abb.	Full term
AAI	Single-chamber atrial
	Rate response available if desired
	Atrioventricular
	Atrioventricular node
	Bundle Branch Block
<i>BPEG</i>	British Pacing and Electrophysiology Group
CK-MB	Creatine kinase MB isoform
CRT	Cardiac resynchronization therapy
	Cardiac troponin values
cTnI	Cardiac troponin I
DDD	Dual-chamber
DDDR	Rate response available if desired
ECG	Electrocardiogram
hs	High-sensitivity
<i>ILR</i>	Insertable loop recorder
NASPE	North American Society of Pacing and Electrophysiology
<i>SA</i>	Sino atrial
<i>SND</i>	Sinus Node Dysfunction
<i>URL</i>	Upper reference limit
<i>VDD</i>	Single-lead, atrial-sensing ventricular
VVI	Single-chamber ventricular
<i>VVIR</i>	Rate response available if desired

Introduction

he term myocardial injury should be used when there is evidence of elevated cardiac troponin values (cTn) with at least one value above the 99th percentile upper reference limit (URL). The myocardial injury is considered acute if there is a rise and/or fall of cTn values (Thygesen et al., 2007).

The cardiac troponin I (cTnI) is a part of the cardiac contractile apparatus, the troponin-tropomyosin complex. It is a very sensitive laboratory marker of myocardial cell necrosis and one of the gold standard measurements in detecting myocardial injury. Elevated cTnI levels maybe associated with a variety of clinical conditions like myocardial infarction, acute pulmonary edema, ventricular tachycardia, shock, acute renal impairment (Thygesen et al., 2010).

Transvenous insertion of endocardial leads for permanent pacing is accompanied by troponin elevation compatible with myocardial damage, secondary to the direct myocardial trauma elicited by pacing leads (Boos et al., 2004).

The RV apex has been the preferred site for RV lead placement because of the ease of implantation and low risk of lead dislodgement. With the development of active fixation leads, alternative RV pacing sites have been explored, including the RV outflow tract, the RV septum, and the His bundle region. Pacing from these sites is thought to be more

physiological, engaging the Purkinje network earlier than apical pacing thus reducing or preventing the electric and mechanical dyssynchrony associated with RV apical pacing. Some data from acute or short-term randomized studies support this hypothesis (Shimony et al., 2012).

AIM OF THE WORK

The aim of the study is to assess the extent of myocardial injury in patients undergoing trans-venous implantation of permanent pacemaker using cardiac troponin I (cTnI) as a marker of myocardial injury and it's relation to different sites of RV pacing and number of trials of screwing the RV lead into the myocardium.

Chapter 1

MYOCARDIAL INJURY

The term myocardial injury should be used when there is evidence of elevated cardiac troponin values (cTn) with at least one value above the 99th percentile upper reference limit (URL). The myocardial injury is considered acute if there is a rise and/or fall of cTn values (*Thygesen et al.*, 2007).

Biomarker detection of myocardial injury and infarction:

Cardiac troponin I (cTnI) and T (cTnT) are components of the contractile apparatus of myocardial cells and are expressed almost exclusively in the heart (*Thygesen et al.*, 2012).

Increase in cTnI values have not been reported to occur following injury to non-cardiac tissues. The situation is more complex for cTnT. Biochemical data indicate that injured skeletal muscle expresses proteins that are detected by the cTnT assay leading to some situations where elevations of cTnT could emanate from skeletal muscle (*Mair et al.*, 2017).

Recent data suggest that the frequency of such elevations in the absence of ischaemic heart disease may be higher than originally thought (*Schmid et al.*, 2018).

cTnI and cTnT are the preferred biomarkers for the evaluation of myocardial injury and high-sensitivity (hs)-cTn assays are recommended for routine clinical use (*Apple et al.*, 2015).