

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

The Effect of Different Scanning Protocols on the Retention of Digitally Constructed Complete Denture Bases

Thesis

Submitted to Oral & Maxillofacial Prosthodontics
Department,
Faculty of Dentistry Ain Shams University for the
Partial Fulfillment of the Master's Degree in Oral
and Maxillofacial Prosthodontics

By Lina Samih Ibrahim Eldahmy

B.D.S, Cairo University
(2013)

Faculty of Dentistry Ain Shams University

2021

Supervisors

Prof. Marwa Ezzat Sabet

Professor of Oral & Maxillofacial Prosthodontics Faculty of Dentistry Ain-Shams University

Prof. Fardos Nabil Rizk

Professor of Oral & Maxillofacial Prosthodontics
And Vice dean for teaching and learning
Faculty of Dentistry
British University in Egypt

Dr. Hebatallah Tarek Mohammed

Associate Professor of Oral & Maxillofacial Prosthodontics Faculty of Dentistry Ain Shams University

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I would like to express my deepest gratitude and great respect to **Prof. Marwa Ezzat Sabet,** Professor of the Oral & Maxillofacial Prosthodontics - Faculty of Dentistry- Ain Shams University, under whose supervision I had the honor and pleasure to proceed with work. Her constant guidance encouragement and foresight made all the difference.

I am also delighted to express my deepest gratitude and thanks to **Prof.** Fardos Mabil **Rizk**, Vice dean and Professor of the Oral & Maxillofacial Prosthodontics, Faculty of Dentistry, British University in Egypt, for her kind care, valuable instructions, constant help and great assistance throughout this work.

My deepest appreciation goes to **Dr. Thebatallah Tarek Mohammed,** Associate Professor of Prosthodontics, Faculty of Dentistry, Ain Shams University, for her valuable suggestions, advice, efforts and for allowing me a free access to her precious time during the accomplishment of this work.

I would like to thank my parents and my family especially my sister (Arwa) of all their patience, love, support and sacrifice which made this work possible.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Lina Samih Dbrahim Eldahmy

Tist of Contents

Title	Page No.
List of Tables	iii
List of Figures	i
Introduction	1
Review of Literature	3
I. Edentulism:	3
II. Complete Dentures:	5
III. CAD/CAM Dentures and digital work flow:	7
- Data acquisition	
- Digital Design	15
- Manufacturing process (Additive Vs. subtractiv	re)15
IV. Retention of Complete denture	24
V. Methods of measuring retention in complete den	
Aim of the Study	37
Materials and Methods	
Results	64
Discussion	66
Summary	77
Conclusion	
Recommendations	79
References	80
Arabic Summary	

Tist of Figures

Fig. No.	Title	Page No.	
Fig. (1):	a) Maxillary primary impression	47	
	b) Maxillary side of the Closed-mor		
	impression technique		
	c) Frontal view of Closed-mor		
	impression technique		
Fig. (2):	3Shape desktop scanner D850		
Fig. (3):	Okklu-Exact spray		
Fig. (4):	Settings for the maxillary impression sca		
Fig. (5):	The virtual Assembly		
Fig. (6):	Determining the occlusal plane		
Fig. (7):	Determining the characteristic points on		
	both jaws		
Fig. (8):	a) Determining the vestibular depth and		
	Denture borders for the maxillary arch49		
	b) Determining the vestibular depth a		
	Denture borders for mandibular arch		
Fig. (9):	Choosing teeth from the library		
Fig. (10):	The final upper and lower denture desig		
Fig. (11):	The Denture base STL file		
Fig. (12):	Maxillary Cast and jaw relation records		
	inside the scanner		
Fig. (13):	The virtual scan of the maxillary cast		
Fig. (14):	Determining the geometric center of		
	Denture base		
Fig. (15):	Creating supports for the print	_	
	procedure		
Fig. (16):	Mogassam 3D printer and post curing un		
Fig. (17):	NextDent base Resin		
Fig. (18):	The denture immediately after printing		
Fig. (19):	Denture placed in post curing unit		
Fig. (20):	A hole made in the center of the dent		
	base to receive the wire loop	58	

Tist of Figures (Cont...)

Fig. No.	Title Pa	ge No.
Fig. (21):	a) Occlusal view of denture base	
	modification with loop wire	59
	b) 45 degree view of denture base	
	modification with loop wire	59
Fig. (22):	The Digital force gauge kit and	
	accessories	61
Fig. (23):	a) The direction of pull is perpendicular	
	to the occlusal plane. b) Performing	
	Retention measuring test and recording	
	the value	
Fig. (24):	Clustered column chart demonstrating	
8 . /	the mean retention values of both	
	scanning groups	
	~	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Mean, standard deviation and of Student's t-test for measures test for the retentive of the two groups	repeated e values

Introduction

or more than 400 years' complete dentures were constructed by using different types of materials during the laboratory and clinical procedures. However, the complexity of the laboratory and chair side procedures and the drawbacks of the materials used made the computer technology more demanded in removable prosthodontics. (1)

Complete dentures can be constructed using different techniques. The determinant factor for choosing the most efficient technique is the resulting intimate mucosal adaptation of the prosthesis with minimal dimensional changes and distortion during fabrication. Good adaptation will result in good stability, support and retention. (2)

The digital complete denture workflow is done by computer aided design and computer-aided manufacturing (CAD/CAM). It was successfully used over the last decades. It presents several advantages to the patient and the clinician. Normally, conventional complete dentures require five appointments with a lot of material waste and many hours of patient's, clinician and technician time. Digital workflow can be done in two appointments saving time, effort and material. In addition, patients' records are digitized and stored on the software for any future need. (3) The patient can have an identical prosthesis in case of fracture or lose without the need to make new records. This process will allow the clinician and technician to use a high-value, quality-controlled materials. (4)

The preliminary step of the digital workflow is data acquisition and the production of a 3D virtual replica of the edentulous arch, thus the digitalization. (3) This procedure is proceeded by the designing (CAD) and manufacturing (CAM) of the prosthetic restoration. (1)

The most crucial step is data acquisition. Many studies criticized the use of intraoral scanners in completely edentulous cases, thus the current digitalized complete denture manufacturing system still requires conventional materials drawbacks and techniques in impression making.

Thus this thesis was prompted to evaluate which is better regarding denture base retention either scanning the final impression or scanning the master cast to obtain a 3D virtual model on the software upon which permanent denture base was constructed. (3)

REVIEW OF LITERATURE

Edentulism: I.

espite the advances in oral health care, tooth loss is still prevalent around the globe. Many factors may influence frequency of tooth loss such as:

- Biological factors (dental decay, periodontal pathosis, pulpal involvement, trauma and oral and maxillofacial cancer).
- Non-biological factors (third-party payments for required processes, care accessibility, treatment options, patient decision regarding the treatment options). (4,5)

Chronic periodontal disease and caries are considered the main reasons of tooth loss and edentulism. World health organization states that tooth caries is still widespread through majority of developed and developing countries with some countries reporting incident of 100% of their population; 5% to 20% with periodontal disease and 7% to 69% completely edentulous. (5)

Edentulism Sequels

Edentulous patients are considered disabled and physically impaired according to World health organization due to their incapability of performing the two essential tasks in daily life; eating and speaking. In addition to functional impairment, edentulism also causes psychological and aesthetic alterations. (6)

On General Health:

Chewing problems after teeth loss leads to malnutrition. Due to change of the type of diet, edentulous patients often found with deficiency in minerals, proteins and vitamins and increase in cholesterol and saturated fats. These patients are higher risk of cardiovascular disease and obesity.⁽⁷⁾

This shift in body intake of nutrients makes the patient more susceptible to gastric and peptic ulcers, insulin dependent diabetes, kidney disease and sleep disorders with lower physical activity and chronic fatigue⁽⁸⁾

Moreover, the trigeminal nerve which innervates the periodontal ligaments of teeth and muscles of mastication after multiple teeth loss when its sensory signals are attenuated higher brain activities such as memory and learning are noticeably hindered. (9)

Oro-facial Health:

The most prominent effect of edentulism is residual ridge resorption, aesthetics and soft tissue profile changes.

Mandibular residual ridge undergo resorption four times faster than maxillary residual ridge due to the less surface area subjected to force in mandible. This will lead to decrease in facial height and mandible protrusion.

Age, sex, systemic diseases, duration of edentulism, size of edentulous area, amount and type of stresses transformed to the ridge, and parafunctional habits are all factors that affect the pattern and rate of ridge resorption. (5,8)