

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Digital Testing of Analogue Circuits

A Thesis submitted in partial fulfilment of the requirements of the degree of

Doctor of Philosophy in Electrical Engineering

(Electronics Engineering and Electrical Communications)

by

Bassam Abdelwahab Aboelftooh

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Faculty of Engineering, MTC, 2012

Supervised By

Prof. Hani Fikry Ragaay

Assoc. Prof. Mohammed Hassan Elmahlawy

Assoc. Prof. Sameh Aasem Ibrahim

Cairo - (2021)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electronics and Communications

Digital Testing of Analogue Circuits

by

Bassam Abdelwahab Aboelftooh

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Faculty of Engineering, MIU, 2020

Examiners' Committee

Name and Affiliation	Signature
Prof. El-Sayed Mostafa Saad	
Electronics and Communications , Helwan University	
Prof. Mohamed Amin Ebrahim Dessouky	
Electronics and Communications, Ain Shams University	
Prof. Hani Fikry Ragaay	
Electronics and Communications, Ain Shams University	
Assoc. Prof. Mohamed Hassan Elmahalawy	
Electronics and Communications Future University	

Statement

This	thesis	is submitte	d as a	partial	fulfilment	of D	Octor o	of Phi	losophy	in	Electrical
Engi	neering	g Engineeri	ng, Fac	ulty of	Engineerin	ıg, A	in shan	ns Un	iversity.		

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Eng. Bassam Abdelwahab A	boelftooh
	Signature

Researcher Data

Name : Bassam Abdelwahab Aboelftooh

Date of birth : October 8,1982

Place of birth : Cairo

Last academic degree : Master of Science in Electrical Engineering

Field of specialization : Biomedical Engineering

University issued the degree : Military Technical College

Date of issued degree : October, 2012

Current job : Lecturer Assistant

Thesis Summary

This thesis presents the new parametric fault detection (PFD) approach for analog circuits testing. It combines different approaches to enhance the PFD, based on the proper selection of classified frequency-bands with different amplitude weights for fault controllability and the proper selection of test-points for fault observability. The analog test generator (ATG) that stimulates parametric faults in the analog circuit under test (ACUT) generates a test waveform that sweeps on an applicable frequency-band with amplitude weights instead of sweeping the whole frequencyband. The test response is compacted on each applicable frequency-band for digital signature generation. The summation of unwanted samples from other unwanted frequency-bands are avoided for efficient PFD, based on the digital signature curve (DSC) that plots the digital signatures versus each component variation. In addition, the hybrid between the advantage of the MATLAB and the PSPICE simulation is exploited to developed better worst-case analysis (WCA). The presented simulation results, applied to different analog benchmark circuits, show the significant improvement in the PFD compared to other previously published works, in terms of the classified frequency-band and the required number of test-points. In addition, it is found that the best selection of a test waveform is the sweeping-frequency of a sinusoidal waveform with different amplitude weights.

Key words:

Digital testing of analog circuits; testing of analog circuits; classification of frequency-bands; fault detection for parametric faults; selection of test-points.

Acknowledgment

I would like to thank the following people, without whom I would not have been able to complete this thesis, and without whom I would not have made it through my PhD degree

My supervisor Dr. M. H. Elmahlawy for his enthusiasm during the thesis, consistent support, encouragement and patience. I am extremely grateful for our friendly frequent meetings. And Prof. H. F. Ragaai, for his guidance, thoughtful comments and recommendations.

And my biggest thanks to my family for all the support you have shown me through this research; for my mother, who has the all the credit for all the best in my life and for always praying for me. For my wife for all her support and being responsible for our kids and being alone for long times while I am working on my thesis. For my kids, sorry for being even grumpier and busy than normal whilst I wrote this thesis.

Contents

List of	Figu	ıres	IV
List of	Tab	lesV	/II
List of	Abb	previationsV	Ш
Abstrac	:t		X
Chapter	r 1	Introduction	. 1
1.1	Mo	tivation in the testing of analog circuits	. 1
1.2	Rela	ated works	. 4
1.3	Cha	allenges in analog circuit testing	. 6
1.4	The	esis objectives and contributions	. 8
1.5	The	esis Organization	.9
1.6	List	t of Publications	11
Chapter	r 2	Fault Diagnosis of Analog Circuits	12
2.1	Intr	oduction	12
2.2	Fau	lt classification	16
2.2	2.1	Manufacturing tolerances	16
2.2	2.2	Soft faults	16
2.2	2.3	Hard faults	16
2.2	2.4	Fatal faults	17
2.3	Fau	lt detection objectives	18
2.3	3.1	Fault Detection	18
2.3	3.2	Fault Isolation	18
2.3	3.3	Fault Identification	18
2.3	3.4	Fault prediction	18
2.3	3.5	Fault Explanation	18
2.3	3.6	Fault Simulation	18
2.4	Elec	ctronic circuit testing	19
2.4	4. 1	Design verification phase	19
2.4	1.2	Realization phase	20

2.4.3	Production phase	20
2.4.4	Field testing	21
2.5 Fa	ult diagnosis techniques	22
2.5.1	SBT Techniques: Fault dictionary – Traditional methods	24
2.5.2	SBT Techniques: Fault dictionary – Intelligence methods	29
2.5.3	SBT Techniques: Statistical techniques	32
2.5.4	SAT techniques	32
2.6 Re	ecent Researches Analysis	35
2.6.1	Number of Faults	35
2.6.2	Fault types	35
2.6.3	The benchmark ACUTs	36
2.6.4	Components Considered	36
2.6.5	Reputation of Simulation Tools	36
2.6.6	Timeline analysis	37
Chapter 3	Digital testing of analog circuit system	39
3.1 In	troduction	39
3.2 De	esign Approach of the DTAC	43
3.1.1	Analog test pattern generator	44
3.1.2	Analog circuit under test	50
3.1.3	Digital compactor of the Analog Test response	53
3.3 PS	SPICE circuit simulation and MATLAB simulation	54
3.1.4	Worst-case Analysis of the ACUT	55
3.1.5	Signature Boundary Difference	62
3.4 Di	gital signature curve for analog circuits	63
3.5 Fa	ult detection using the DSC	80
3.6 Co	onclusion	82
Chapter 4	Enhancement techniques for parametric fault detection	84
4.1 In	troduction	84
4.2 Cl	assified Frequency bands	85
4.3 Te	est-Point Selection	88

4.4	Am	plitude Weights of Sinusoidal Test Waveforms	92
4.5	Nor	n-Sinusoidal Test Waveforms and single-frequency test waveforms	100
4.6	AC	UT Case Studies	108
4.6	5.1	Case Study I	108
4.6	5.2	Case Study II	110
4.6	5.3	Case Study III	112
4.6	5.4	Case Study IV	116
4.7	Cor	mparison between the presented work and the other previously published works	124
4.8	Cor	nclusion	129
Chapter	r 5	Conclusion & Future Work	131
5.1	Cor	nclusion	131
5.2	Fut	ure Work	132
Referen	ices		134

List of Figures

Figure 2-1 Classification of analogue circuit faults [11].	. 13
Figure 2-2 Production cycle phases [11]	. 19
Figure 2-3 The Mean Time Between Failures (MTBF) [11]	.21
Figure 2-4 Classification of fault diagnosis methods	. 23
Figure 2-5 The block diagram of the Model-based fault diagnosis	. 25
Figure 2-6 The block diagram of the Hierarchical based fault diagnosis	. 25
Figure 2-7 The block diagram of the formula based fault diagnosis approaches	. 26
Figure 2-8 The block diagram of Signal analysis based fault diagnosis	. 26
Figure 2-9 The block diagram of the sensitivity analysis based technique	. 27
Figure 2-10 The block diagram of Measurement-based fault diagnosis	. 27
Figure 2-11 The block diagram of the oscillation based technique	. 28
Figure 2-12 The block diagram of transform based fault diagnosis	. 29
Figure 2-13 The block diagram of the optimization-based method	.30
Figure 2-14 The block diagram of the rule-based process	.31
Figure 2-15 Block diagramof Machine learning based fault diagnosis	.31
Figure 2-16 Blockdiagram of Hybrid approach based fault diagnosis	.32
Figure 2-17 Analysis based on type of faults	.35
Figure 2-18 Analysis based on simulation tools used	. 37
Figure 2-19 Time analysis	.38
Figure 3-1 Main flowchart of the presented analog testing approach	.43
Figure 3-2. Main block diagram of the presented analog testing approach	. 44
Figure 3-3 Different standard test waveforms generated by the ATG	.45
Figure 3-4 Schematic diagram of the ATG using the PSPICE simulation for	
generating standard test waveforms.	.47
Figure 3-5 Frequency sweep.	.47
Figure 3-6 Timing diagram of the input sinusoidal test waveforms (green) and the	neir
FFT for (a) IW, (b) DW, (c) MW, (d) (CW), and their test response (Red) generated	ated
from the circuit with LPF characteristics.	.49
Figure 3-7 Schematic diagram of the UAF used as the ACUT	.50
Figure 3-8 the analyis of the ACUT using Filter Design Tool	. 52
Figure 3-9 Schematic diagram of the DCATR stage.	. 54
Figure 3-10 Timing diagram of the closing test window of the accumulation pro	cess
for digital signature gneration according to case study I, discussed in section V.	. 54
Figure 3-11 Worst-case transfer function (Max) using a) PSPICE simulation. b)	
MATLAB simulation	. 57
Figure 3-12 Worst-case transfer function (Min) using a) PSPICE simulation. b)	
MATLAB simulation.	. 59

Figure 3-13 SBD of TP _{LPF} using different test waveforms with different amplitudes	ıde
weights using the Hybrid simulation.	63
Figure 3-14 The amplitude response Vs. R1 variations for using the PSPICE	
simulation	66
Figure 3-15 The pass-band gain and the bandwidth Vs. R ₁ variations for using t	he
PSPICE simulation	67
Figure 3-16 The DSC and DSB of R ₁ using the Hybrid simulation	68
Figure 3-17 The DSC and DSB of R ₁ using the MATLAB simulation	68
Figure 3-18 The amplitude response Vs. R _q variations for using the PSPICE	
simulation	69
Figure 3-19 The pass-band gain and the bandwidth Vs. R _q variations for using t	
PSPICE simulation	
Figure 3-20 The DSC and DSB of R _q using the Hybrid simulation	71
Figure 3-21 The DSC and DSB of R _q using the MATLAB simulation	71
Figure 3-22 The amplitude response Vs. C ₂ variations for using the PSPICE	
simulation	72
Figure 3-23 The pass-band gain and the bandwidth Vs. C ₂ variations for using t	he
PSPICE simulation	73
Figure 3-24 The DSC and DSB of C ₂ using the Hybrid simulation	73
Figure 3-25 The DSC and DSB of C ₂ using the MATLAB simulation	74
Figure 3-26 The amplitude response Vs. R ₂ variations for using the PSPICE	
simulation	75
Figure 3-27 The pass-band gain and the bandwidth Vs. R ₂ variations for using t	he
PSPICE simulation	76
Figure 3-28 The DSC and DSB of R ₂ using the Hybrid simulation	76
Figure 3-29 The DSC and DSB of R ₂ using the MATLAB simulation	77
Figure 3-30 The amplitude response Vs. R ₄ variations for using the PSPICE	
simulation	78
Figure 3-31 The pass-band gain and the bandwidth Vs. R ₄ variations for using t	he
PSPICE simulation	79
Figure 3-32 The DSC and DSB of R ₄ using the Hybrid simulation	79
Figure 3-33 The DSC and DSB of R ₄ using the MATLAB simulation	80
Figure 3-34 Undetectable parametric faults.	81
Figure 4-1 Amplitude responses of the three test-points	85
Figure 4-2 Classified frequency-bands of the TP _{LPF}	86
Figure 4-3 Classified frequency-bands of the TP _{HPF}	86
Figure 4-4 Classified frequency-bands of the TP _{BPF}	87
Figure 4-5 Schematic diagram and the amplitude response of the SKLPF	111

Figure 4-6 Schematic diagram and the frequency-band classification of the BF.	114
Figure 4-7 schematic daigram, amplitude response of the ACUT with 11-TP	120
Figure 4-8 Schematic diagram of the Sallen-Key band-pass-filter	126