

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

CONCEPTUAL COST ESTIMATION OF BUILDING CONSTRUCTION PROJECTS USING FUZZY LOGIC

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING

Prepared by Islam Ayman Mohamed Ahmed Khalil Badra

B.Sc. in Civil Engineering, The British University in Egypt

Supervisors

Professor. Mohamed Mohamed Attabi

Professor of Structural Analysis, Faculty of Engineering Ain Shams University

Associate Professor. Mohamed Badawy Abd El Megeed

Associate Professor of Structural Engineering Department,
Faculty of Engineering
Ain Shams University

Cairo, EGYPT 2021

CONCEPTUAL COST ESTIMATION OF BUILDING CONSTRUCTION PROJECTS USING FUZZY LOGIC

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE
IN CIVIL ENGINEERING

Prepared by

Islam Ayman Mohamed Ahmed Khalil Badra

B.Sc. in Civil Engineering, The British University in Egypt

THESIS APPROVAL EXAMINERS COMMITTEE Prof. Dr. Gouda Mohamed Ghanem Professor, of Concrete Structure, Faculty of Engineering, Cairo University. Prof. Dr. Ibrahem Ahmed Moharm Professor, of Concrete Structure, Faculty of Engineering, Ain Shams University. Prof. Dr. Mohamed Mohamed Attabi Professor, of Concrete Structure, Faculty of Engineering, Ain Shams University.

Date: /

/

STATEMENT

This thesis is submitted to the faculty of engineering at Ain Shams University in partial fulfillment of the requirement of the M.Sc. Degree in Civil engineering.

Any kind of work included in this thesis has been done by the author. No part of the thesis has been submitted for a degree or a qualification at other university or institute.

Islam Ay	ma	n Ba	ıdra
Sign	atu	re	
•••••	••••	••••	••••
Date:	1	/	

RESEARCHER'S DATA

Name of Researcher Islam Ayman Mohamed Badra

Date of Birth November 22, 1991

Place of Birth Egypt

Nationality Egyptian

First University degree B.Sc. Civil Engineering

Department Civil Engineering

University The British University in Egypt

Date of Degree July 2014

Current Job Site Engineer - The Petroleum Projects &

Technical Consultations (PETROJET)

ACKNOWLEDGEMENT

First of all, Allah alone deserves all praises for making everything possible so, all thanks and appreciations to Allah for his unlimited blessings and the strength to complete this thesis.

I wish to express my profound gratitude **Prof. Dr. Mohamed Mohamed Attabi,** for his continued guidance, supervision, and comments throughout the course of this research. He has been ever-present force in helping me to mature as a student and as a researcher. His dedication to helping me succeed is deeply appreciated.

My sincere appreciation goes to **Dr. Mohamed Badawy**, for all assistance, advice, encouragement and invaluable support given as my advisor. Dr. Mohamed Badawy careful check and useful response have made a great contribution to the production of this thesis in its final form.

I would like to express my appreciation to the academic staff of the civil engineering department at AIN-SHAMS University, for their academic and scientific supervision.

My grateful thanks to all contractors, consultants, and engineers who participated in filling questionnaires and provided important information for this study.

Finally, I would like to thank my parents, brothers, and all of my family for their love, support and for tolerating the time I spent working with my research.

Islam Badra

ABSTRACT

Owners need clear information about the cost at the early stage; while information about drawings and designs are limited. Cost is a very important standard and should be taken into account during the early stage of any construction project, so cost estimation is crucial in construction related projects. Estimating of project cost is imperative step in early phase in project because it can influence or change the scope of project. The accuracy of the estimation is very important to achieve the objective of any Construction project, where cost overruns can lead to serious obstacles, for instance project termination, especially on the current focus on limited budget.

This research aims to develop a fuzzy model for estimating the cost of construction projects in the conceptual stage. Seven factors affecting cost estimation were identified; slab type, area of floor, floor number, number of elevators, type of internal finishing, type of external finishing, and type of electro-mechanical work. This model will serve as a tool that could be used by all parties and will facilitate the cost estimation process at the early phases of projects through a more effective utilization of the limited available information.

The proposed model was developed using 6,912 rules and 131 real projects. The absolute percentage of errors was 9.16%. The New artificial intelligent approaches have recently gained immense popularity. The proposed model will serve as a tool that could be used by all parties involved in the project.

Keywords: construction cost; residential building; Conceptual phase; regression analysis; Fuzzy logic.

TABLE OF CONTENTS

	Page
1. Introduction	1
1.1. Background	1
1.2. Problem Statement	2
1.3. Research Aim	3
1.4. Research Objectives	3
1.5. Research Importance	4
1.6. Research Scope and Limitation	4
1.7. Methodology Outline	4
1.8. Research Layout	5
2. Literature Review	7
2.1. Introduction	7
2.2. Definitions	8
2.2.1. Cost and Price Concepts	8
2.2.2. Cost Engineering	8
2.2.3. Cost Estimate	8
2.2.4. Construction Cost	9
2.3. Purposes of Cost Estimate	9
2.4. Accuracy of Cost Estimate	10
2.5. Types of Construction Cost Estimate	12
2.6. Estimating Process	15
2.7. Classification of Construction Costs	16
2.7.1. Material Cost	17
2.7.2. Labour Cost	17
2.7.3. Equipment Costs	17

		Page
	2.7.4. Overheads	18
	2.7.5. Mark up	18
	2.8. Qualities of Good Cost Estimate	20
	2.8.1. Estimator's Responsibility	21
	2.8.2. Estimator's Skills	21
	2.9. Conceptual Estimating Methods	22
	2.9.1. Capacity Factoring Technique	22
	2.9.2. Parametric Modelling	23
	2.9.3. End-Units Method	25
	2.9.4. Analogy Method	26
	2.9.5. Expert Judgement	26
	2.10. Fuzzy Logic	27
	2.10.1. Fuzzy Logic Definition	27
	2.10.2. Fuzzy Logic History	28
	2.10.3. Fuzzy Logic Applications	30
	2.10.4. Fuzzy Sets and Membership Functions	31
	2.10.5. Membership Functions Shapes	36
	2.10.6. Fuzzy Set Operation	38
	2.10.7. Fuzzy Control Systems	40
	2.11. Previous Researches of Construction Cost Estimation	44
3.	. Methodology	53
	3.1. Introduction	53
	3.2. Research Strategy	53
	3.3. Research Design	54
4.	. Data collection	56
	4.1. Introduction	56
	4.2. Research Population and Sample Size	56
	4.3. Defining the Factors Affecting Cost Estimating Project	58
	4.4. Structured Questionnaire	64

	Page
4.5. Reliability and Validity of Questionnaire	65
4.6. Development of the Research Model	66
5. Model development	68
5.1. Introduction	68
5.2. Model Building	68
5.2.1. Data Organization and Sets	69
5.2.2. Rules Adding	70
5.2.3. Model User Interface	72
5.3. Model Reliability and Validity	73
5.4. Regression analysis	76
5.4.1. Fuzzy Logic Definition	77
5.4.2. Fuzzy Logic History	78
5.4.3. Fuzzy Logic Applications	82
5.4.4. Fuzzy Sets and Membership Functions	86
5.4.5. Membership Functions Shapes	90
5.4.6. Fuzzy Set Operation	94
5.4.7. Fuzzy Control Systems	98
5.4.8. Fuzzy Set Operation	102
5.4.9. Fuzzy Control Systems	106
6. Discussion	112
7. Conclusion and Recommendations	116
7.1. Introduction	116
7.2. Conclusion	116
7.3. Recommendations	119
7.4. Recommendations for Further Studies	121
8. References	122
Appendix: Questionnaire	134

LIST OF TABLES

Table no.	Title	Page
2-1	The following questions for cost estimation	20
2-2	The developed algorithms	50
2-3	The minimum absolute percentage errors for the previous researches	52
4-1	The factors assumed in previous researches	58
4-2	The factor affecting the project cost	61
4-3	The headline and core CPI that represented by CAPMAS	62
4-4	The monthly and annually CPI and inflation in years between 2013 and 2018	63
5-1	The mean absolute error rate of the comparison results	74
5-2	The coefficients of the linear analysis equation	78
5-3	The coefficients of the non-linear analysis equation	79
5-4	The mean absolute error rate of Logistic analysis	80
5-5	The coefficients of the logarithmic analysis equation	83
5-6	The mean absolute error rate of the logarithmic results	84
5-7	The coefficients of the inverse analysis equation	87
5-8	The mean absolute error rate of the inverse results	88
5-9	The coefficients of the quadratic analysis equation	91

Table no.	Title	Page
5-10	The mean absolute error rate of the quadratic results	92
5-11	The coefficients of the power analysis equation	95
5-12	The mean absolute error rate of the power results	96
5-13	The coefficients of the cubic analysis equation	99
5-14	The mean absolute error rate of the cubic results	100
5-15	The coefficients of the growth analysis equation	103
5-16	The mean absolute error rate of the growth results	104
5-17	The coefficients of the S-curve analysis equation	107
5-18	The mean absolute error rate of the S-curve results	108
5-19	The value of MAPE of all regression models	111