

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DEPARTMENT OF STRUCTURAL ENGINEERING

Strengthening of Post Tensioned Flat Slabs Using FRP Strips

Thesis
Submitted in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy (PhD)

In

Civil Engineering (Structures Engineering)

By

Eng. Ghada Nashaat Mohamed Ahmed

Supervised by

Prof. Dr. Ayman Hussein Hosny Khalil

Professor of Reinforced Concrete Structures
Faculty of Engineering
Ain Shams Universit

Prof. Dr. Hadad Said Hadad

Head of Reinforced Concrete Institute Housing and Building National Research Center

Dr. Morcos Farid Saman

Structural Engineering Department Higher Technological Institute10thof Ramdan

Cairo – Egypt

2021

STATEMENT

This thesis is submitted as partial fulfillment of phd degree in civil engineering (structural), Faculty of engineering, Ain Shams University.

The other carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity.

Date: / /

Name: ghada nashaat mohamed

Signature:

ACKNOWLEDGMENTS

First of all, I would like to thank God for every gift bestowed on me...

Next, I would like to thank my advisers Dr. Ayman Hussein, and Dr. Hadad Said Hadad for the opportunity to conduct this research, providing me endless insight on the nature of the problem, and for being always available for assistance and for queries.

Special thanks go to my parents for their endless support, encouragement, and believing and help me to believe that I can succeed at anything.

Finally, I would like to thank all of my friends, past and present for all the good times we've had and all the good times yet to have.

ABSTRACT of PHD THESIS

Thesis Title: Strengthening of Post Tensioned Flat Slabs Using CFRP Strips

Prepared by: ghada nashaat Mohamed

Supervisors: Prof. Dr. Ayman Hussien Hosny Khalil

Prof. Dr. Hadad Said Hadad

Dr. Morcos farid saman

ABSTRACT

This thesis is experimental and numerical studies to investigate the performance of fully pre-stress two-way post-tensioned slab strengthening using CFRP Strips to prove its efficient work in two-way pt slabs action, taking into account some different parameters as bond tendon, unbonded tendon and precompression ratio.

The experimental program included five post tension two-way slabs. The design was carried out for most widespread code ACI318-14, ACI440.2R-17and extent to compare the design requirements and the design results with ECP203. The numerical analysis using the Finite Element Method was implemented through ANSYS program. A good correlation between FE and experimental results.

Performance of the fully pre-stress post tensioned two-way slab pre-strength with CFRP strips have better performance in boded rather than unbonded. and the effect of pre-compression in CFRP strain is the same for different values.

KEY WORDS:

Post tensioned, Post tensioned slab, CFRP, strips

LIST OF CONTENTS

ACKNOWLEDGEMENTS	
ABSTRACT	ii
TABLE OF CONTENTS	iv
LIST OF FIGURES	xi
CHAPTER (1): Introduction	1
1.1 General	1
1.2 Thesis objectives.	2
1.3 Thesis organization	2
CHAPTER (2): Literature Review	4
2.1 Introduction	4
2.2General	4
2.2.1Advantages of post tension construction	5
2.2.2 Types of post tension	5
2.2.3 Full and partial pre-stressing concrete	6
2.2.4 Force selection.	7
2.3 Behavior of Post Tension Slabs in Flexure	7
2.3.1 Definition and Concept of Two-Way System	12
2.3.2 Serviceability and strength limits	14
2.4 Strengthening of Concrete Structures using FRP	19
2.4.1 Fiber Reinforced Polymer (FRP) Materials	19
2.4.2 Flexural Design and Mode of Failure of FRP Strengthening	20
2.5 Experimental Studies of Strengthening PT Floors by FRP	2.4

2.6 Recommendation of Code Agencies adding FRP to the pre-stressed member	
2.7Finite Element Modeling of PT Slabs and externally bonded FRP	30
2.7.1 Simulation of Materials and Contact Surfaces	34
	34
2.7.2 Simulation of Debonding and Concrete Crushing	36
2.8 Summary and conclusions	40
CHAPTER (3): EXPERIMENTAL WORK	
3.1 General	41
	41
3.2 Test Specimens	41
3.3 Materials Properties	
3.3.1 Concrete	47
3.3.2 Carbon Fiber Reinforced Polymer (CFRP) Strips Properties	47
3.3.3 Tendon Characteristics & RFT Steel	48
	49
3.4 Fabrication of PT slabs	51
3.5 Application Steps of the Strengthening System	31
2.6 To 1.4 To 1.4 To 1.4	57
3.6 Test setup	62
3.7 Instrumentation	
CHAPTER (4): EXPERIMENTAL RESULTS.	63
4.1 General	
4.2 Failure mode	66
4.2.1 control slabs (BN, UN)	66
4.2.2 strengthen slabs (BS1, BS2& US)	66
4.3 Load - deflection relationship	70
4.3.1 control slabs (BN, UN)	80
4.3.2 strengthen slabs (BS1, BS2& US)	80

I List of content

4.4 Concrete strain behavior	
4.4.1 control slabs (BN, UN)	83
4.4.2 strengthen slabs (BS1, BS2& US)	83
4.5 Tensile steel Strain behavior	84
4.6 CFRP Strain behavior	86
4.7 Comparison between tested slabs	87
4.7.1 Comparison between BN and BS1	90
4.7.2 Comparison between UN and US	90
4.7.3 Comparison between BS1 and BS2	91
4.7.4 Comparison between BS1 and US	93
4.7.5 Comparison between BN and UN	94
4.8 FRP Strip Efficiency	
4.9 Summary	97
CHAPTER (5): Finite Element Modeling	98
5.1 Introduction	99
5.2 FE Analysis	99
5.2.1 Description of FE model	99
5.2.2 Main element types	99
5.2.3 Constitutive material modeling	99
5.2.3.1 Concrete material	101
5.3.2.2 Steel plates	101
5.3 Modeling of Epoxy-Concrete/FRP Interface	102
5.4 Frp/concrete interface models	103
5.5 Unbonded Cable Modeling	105

5.6 Mesh and non-linear analysis	106
5.7 Loading and Boundary Conditions	
5.8 Finite element results and Discussion	106
5.8.1 Failure mechanisms of the developed slabs	110
5.8.2.1 First According to camber	111
5.8.2.2 Initial Strain of Concrete	111
	112
5.9 Load-deflection behavior	114
5.10 Concrete Strain Behavior	115
5.11 Load-CFRP strain response	
5.12 Failure mode	120
	122
5.13 Parametric study	124
5.13.1 Different loading scheme	126
5.13.2 Different arrangement of CFRP strips	120
5.13.3 Different reinforcement	126
	131
5.13.4 Continues post tension Slab	134
5.13.5 Strength contribution	
5.13.6 initial strain	139
CHAPTER (6): Conclusions and Recommendations	140
6.1 Introduction	
6.2 Conclusions	140
6.3 Recommendations for future work	141 146
REFERENCES	147
APPENDIX A	149
APPENDIX C	143
AI I ENDIA C	

LIST OF TABLES

Chapter (2)	Literature Review	4
Table (2.1):	concrete stresses limits immediately after transfer of pre_stresses	16
Table (2.2):	concrete stresses limits of sustained and total loads	17
Table (2.3):	Element types and Geometry Details	39
Chapter (3)	EXPERIMENTAL WORK	41
Table (3.1):	Properties of concrete	48
Table (3.2):	Properties of CFRP strips	49
Table (3.3):	Properties of RFT	49
Chapter (4)	EXPERIMENTAL RESULTS	88
Table (4.1):	Cracking load, ultimate load and stiffness of tested slabs	89
Table (4.2):	Failure modes	98
Chapter (5)	Finite Element Modeling	99
Table (5.1):	value of Δcamber	112
Table (5.2):	Ultimate Load Comparison of Test Results With FE Results	117
Table (5.3):	cracking Load Comparison of Test Results With FE Results	117
Table (5.4):	Cracking Deflection Comparison of Test Results With FE Results	117
Table (5.5):	Ultimate Deflection Comparison of Test Results With FE Results	117

LIST OF FIGURES

Chapter	(2) Literature Review	4
E' 0.1	procedure for post tension concrete	_
Figure 2.	1: member	5
Figure 2.	2: Details of the specimens	9
Figure 2.	Dimensions of Specimen	10
Figure 2.	Representation of tendon	11
Figure 2.	Load transfer of Pre-stressed flat	11
Figure 2.	simply supported plate under uniform	12
Figure 2.	7: Transverse loading and biaxial pre-compression on a square plate	13
Figure 2.	8: Material Stress-Strain Relationships	14
Figure 2.	9: Forces and strains of pre-stressing section	15
Figure 2.	10: concrete strain at height of pre- stressing	15
Figure 2.	11: Bonded –reinforcement for two-way slabs using ECP 203-2018.	17
Figure 2.	Bonded –reinforcement for two-way slabs using ACI318-14.	18
Figure 2.	13: Varios Types of FRP	20
Figure 2.	Rond stress distribution on CERP	21
Figure 2.	15: Failure Modes of RC Beams Strengthened with FRP Laminates	23
Figure 2.	16: IC Debonding Failure Modes of RC Beams Strengthened with FRP	24
Figure 2.	17: Prestressed Slabs Strengthen With FRP	25
Figure 2.	18: Load-Deflection of Slabs	25
Figure 2.	Diagonal and Orthogonal CFRP	26
Figure 2.	Mechanism of FRP	28
Figure 2.		29

Figure 2.22:	Testsetup	30
Figure 2.23:	Failure mode of PT member strengthened with FRP	32
Figure 2.24:	Failure mode of RC member strengthened with FRP	33
Figure 2.25:	Unbonded Tendon Modeling	35
Figure 2.26:	Shell 41 Geometry	36
Figure 2.27:	Geometry of INTER 205 Element (after ANSYS 2012)	37
Figure 2.28:	FE simulation of Debonding at Various Interfaces by INTER 205 Element	37
Figure 2.29:	Bilinear CZM model a) Normal Debonding and b) Shear Debonding	38
Figure 2.30:	Shear Stress (Bond Stress–Slip) Model at The Interface between the Aluminum and Concrete Elements	39
Chapter (3)	EXPERIMENTAL WORK	41
Figure 3.1:	Specimen Dimensions	42
Figure 3.2:	Details of Lower and Upper Reinforcement	43
Figure 3.3:	Details of Additional Reinforcement	44
Figure 3.4:	Details of Tendon Layout for (UN, US, BN, BS1) Slabs	45
Figure 3.5:	Details of Tendon Layout for BS2 Slab	46
Figure 3.6:	Details of CFRP Strips Layout for All Strengthen Slabs	46
Figure 3.7:	Casting and testing standard cylinder of concrete	48
Figure 3.8:	Bonded and Unbonded Tendon with Onion End	50
Figure 3.9:	Preparing and Testing Steel and CFRP Bars	50
Figure 3.10:	Slab formwork, reinforcement cages and tendons in place	51
Figure 3.11:	Specimen Ready for Casting	52
Figure 3.12:	Cast Concrete process	53
Figure 3.13:	Concrete treatment process	54
Figure 3.14:	Tendons stressing and grouting process	56

Figure 3.15:	slabsurface	58
Figure 3.16:	Mix components of part A and B master protect 2020 using mixer	58
Figure 3.17:	Strips cleaned with acetone	59
Figure 3.18:	Adhesive profiled on strip	60
Figure 3.19:	Attachment of strips and held them in position by posts	61
Figure 3.20:	Test setup and instrumentation of slabs specimens	62
Figure 3.21:	LVDTS and Strain Gauges (S.G) Location for All Specimens	64
Figure 3.22:	Loading Frame.	65
Figure 3.23:	Test set up at HBNRC	65
Chapter (4)	EXPERIMENTAL RESULTS	66
Figure 4.1:	Experimental Crack Pattern of Bounded control slab	67
Figure 4.2:	Crack Pattern of thickness of Bounded control slab.	68
Figure 4.3:	Experimental Crack Pattern of Unbounded control slab.	69
Figure 4.4:	Experimental Crack Pattern of strengthen bounded slab with 1mpa.	71
Figure 4.5:	Crack Pattern of thickness of Strengthen Bounded slab with 1mpa.	72
Figure 4.6:	Failure of CFRP Strips for Strengthen Bounded slab with 1mpa	73
Figure 4.7:	Experimental Crack Pattern for Strengthen Bounded slab with 2mpa.	74
Figure 4.8:	Crack Pattern of thickness of Strengthen Bounded slab with 2mpa.	75
Figure 4.9:	Failure of CFRP Strips for Strengthen Bounded slab with 2mpa	76
Figure 4.10:	Experimental Crack Pattern for Strengthen Unbounded slab	77
Figure 4.11:	Experimental Crack Pattern for Strengthen Unbounded slab side	78
Figure 4.12:	Failure of CFRP Strips for Strengthen Unbounded slab	79
Figure 4.13:	Load vs deflection for BN	80
Figure 4.14:	slabLoad vs deflection for UN	81
<i>6</i>	slab	