

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Holmium Laser Enucleation Prostatectomy versus Bipolar Transurethral Resection of the Prostate in Management of Benign Prostatic Hyperplasia

Thesis

Submitted For Partial Fulfillment of Doctorate Degree in Urology

By

Ahmed Lotfy Ghazy El Gohary

MBBCh - MSc in Urology, Ain Shams University

Under supervision of

Prof. Dr. Mohamed Sherief Mourad

Professor of Urology Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Mohamed Mohamed Yassin

Assistant Professor of Urology Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Ahmed Farouk Salem

Assistant Professor of Urology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Sherief Mourad,** Professor of Urology, Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Dr. Mohamed Mohamed Wassin, Assistant Professor of Urology, Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ahmed Farouk Salem**, Assistant Professor of Urology, Faculty of Medicine - Ain Shams University, for his great help, active participation and guidance.

I am very thankful to **Dr. Ahmed Ibrahim Radwan**, Lecturer of Urology, Ain Shams University for his
great support & effort throughout the whole work.

Ahmed Lotfy

List of Contents

Title Page No	0.
List of Tables	i
List of Figures	.ii
List of Abbreviations	iv
Introduction	. 1
Aim of the Study	.3
Review of Literature	
Anatomy of the Prostate	.4
Physiology of BPH	
Laser Prostate Surgery1	
Holmium: YAG Laser Prostatectomy1	19
Holmium Laser Enucleation of the Prostate (HoLEP)2	24
Bipolar Transurethral Resection of the Prostate	34
Patients and Methods4	11
Results4	18
Discussion	36
Conclusion	72
Summary	73
References	
Arabic Summary	

List of Tables

Table No.	Title	Page	No.
Table (1): Table (2):	Demographic data Comparison between both groups		50
	regard age, complain and prostate size) .	51
Table (3):	Comparison between both groups regard IPSS, PSA and Q preoperatively.	max	53
Table (4):	Comparison between both groups regard Hb drop, resected volumestoperative catheter time and duration of hospital stay	ume, ation	54
Table (5):	Comparison between both groups regard Qmax, PSA and post voiding		56
Table (6):	Comparison between both groups regard IPSS, PSA, Qmax post, voiding residual volume and postopera prostate size	post ative	56
Table (7):	Comparison between both groups regard QOL pre and postoperative		57
Table (8):	Comparison between both groups regard complications.		58
Table (9):	Comparison between IPSS, Qmax, and post voiding in laser group		59
Table (10):	QOL pre and postoperative in laser gro	oup	62
Table (11):	Comparison between IPSS, Qmax, and postvoiding in bipolar group		63
Table (12):	QOL pre and postoperative in big		65

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Zanag of the prograte	
Figure (1):	Zones of the prostate Prostate vasculature	
9		
Figure (3):	Symptoms of BPH	
Figure (4):	International Prostate Symptom Sco	
Figure (5):	BPH progression.	
Figure (6):	Site of prostatic adenoma	
Figure (7):	Prostate by TRUS	12
Figure (8):	Prostate by PAUS	12
Figure (9):	Uroflow.	13
Figure (10):	Evaluation of BPH	13
Figure (11):	Electromagnetic spectrum	14
Figure (12):	Energy state of normal populations	
Figure (13):	Population inversion of atoms	
Figure (14):	Spontaneous emission of energy	
Figure (15):	Laser fiber	
Figure (16):	Holmium laser machine	21
Figure (17):	Endoscopy set	22
Figure (18):	Enucleation lobe.	22
Figure (19):	Enucleation of the median lobe	26
Figure (20):	Enucleation of the lateral lobes	27
Figure (21):	Tissue morcellation after HoLEP	28
Figure (22):	New karl storz morcellator	28
Figure (23):	Electrosurgical effects-desiccation	37
Figure (24):	Electrosurgical effects- fulguration	38
Figure (25):	Electrosurgical effects- vaporization	39

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (26):	Set used in Bipolar TURP	43
Figure (27):	Steps of TURP	
Figure (28):	Consort flowchart	
Figure (29):	Complaint	
Figure (30):	Age	
Figure (31):	Complaint	
Figure (32):	Post operative catheter time	
Figure (33):	Duration of hospital stay	
Figure (34):	International Prostate Symptom S (IPSS)	Score
Figure (35):	Qmax	
Figure (36):	PSA	
Figure (37):	QOL pre and postoperative in group	laser
Figure (38):	Comparison between IPSS in biggroup	polar
Figure (39):	Qmax	64
Figure (40):	PSA	
Figure (41):	QOL pre and postoperative in biggroup	

List of Abbreviations

Abb.	Full term
BOO Bladd BPH Benig	
B-TURP Bipole saline	ar system Transurethral resection in
BTURP Bipole CO2 Carbo	ar transurethral resection of the prostate on dioxide
CZ Centr	
	ium: Yttrium-Aluminum-Garnet laser ium Laser Bladder Neck Incision
	ium Laser Ablation of the Prostate
	ium Laser Enucleation of the Prostate
	ium Laser Resection of the Prostate national Prostate Symptom Score
	sium Titanyl phosphate laser
	r urinary tract symptoms
Nd:YAG laser Neody OP Open	ymium: Yttrium-Aluminum-Garnet laser prostatectomy
PZ Perip	_
QoL Quali	•
Tu:YAG laser Thuli TUR Trans	um: Yttrium-Aluminum-Garnet laser
	ium laser enucleation of the prostate
	surethral resection of the prostate
	surethral vaporization of the prostate
TZ Trans UTIs Urina	
YAGYttriu	

Introduction

VIRP remains the most frequently performed operation for BPH in small to moderate size prostate, however the long resection time required for large prostate is associated with an increased risk of TUR syndrome and blood loss (Zhu et al., 2013).

Until the year 2012 open prostatectomy was represented as a first line treatment alternative for large size prostate more than 80 gm, despite the substantial perioperative morbidity and extended catheterization and convalescence period (Geavlete et al., 2013).

The Introduction of the bipolar system transurethral resection in saline (B-TURP) has reduced the relative risks of transurethral resection syndrome (TUR Syndrome), blood transfusion and has reduced the need for readmission after surgery. However perioperative bleeding that may require blood incontinence and sometimes bladder transfusion, neck main complications contracture, are the that may encountered during this procedure (Cleves et al., 2016).

Therefor A novel treatment modalities have been vigorously pursued with efficacy comparable to that of open prostatectomy but with fewer complications, HoLEP is one of such modalities that is highly effective for large BPH, however the long learning curve and high cost limits its widespread

extensive application especially in developing countries (Zhu et al., 2013).

Holmium laser enucleation of the prostate (HoLEP) is the most recent step in the evolution of holmium laser prostatectomy. HoLEP is a safe and effective surgical procedure, which has comparable results to transurethral resection of the prostate (TURP) and open prostatectomy, with low morbidity and short hospital stay (Elzayat et al., 2006).

HoLEP is equally suitable for small, medium, and large prostate glands, with clinical outcomes that are independent of prostate size, and recently it has been proposed as a new gold standard for treatment of symptomatic benign prostatic hyperplasia (BPH) (Kuntz et al., 2004).

AIM OF THE STUDY

To compare Holmium laser enucleation and bipolar transurethral resection of the prostate in terms of safety, and efficacy, in the management of prostatic hyperplasia.

Chapter 1

ANATOMY OF THE PROSTATE

The prostate is a pyramidal fibromuscular gland that encircles the male urethra. The average volume of the normal prostate gland is approximately 20 grams. The gland is in continuity with bladder neck superiorly, while inferiorly the apex of the gland lies on the external sphincter of the bladder (*Nehikhare et al.*, 2017).

Microscopic Anatomy of the prostate has divided it into 3 zones as shown in figure (1): transition zone (TZ), central zone (CZ), and peripheral zone (PZ). The prostate consists of approximately 70% glandular tissue and 30% fibro-muscular stroma. (TZ) accounts for 10% of the glandular tissue while the (PZ) accounts for 70% for the glandular tissue (*Nehikhare et al.*, 2017).

(TZ) encircle the urethra from the bladder neck till the membranous urethra and it is where BPH occurs and leads to bladder outlet obstruction (BOO), it is usually described as 2 lateral lobes and a median lobe that leads to LUTS. (CZ) is the area surrounding the ejaculatory ducts and consists of 25% of the glandular element represented in the verumontanum. (PZ) forms the posterior and lateral aspects of the prostate, it is examined during the digital rectal examination and this area