

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

FREQUENCY OF PERIICTAL APNEA AND CARDIAC ARRHYTHMIAS IN EPILEPTIC SEIZURES

Thesis

Submitted for partial fulfillment of MD degree in Neurology

Presented by

Rady Yousif Bedros Kaldas

(M.B., B.Ch) M.Sc, (Neurology)

Supervised by

Prof. Dr. Mohamad Ossama Abdulghani

Professor of Neurology
Faculty of Medicine, Ain Shams University

Prof. Dr. Naglaa Mohamed El Khayat

Professor of Neurology
Faculty of Medicine, Ain Shams University

Prof. Dr. Ahmed Abdulmonem Gaber

Professor of Neurology
Faculty of Medicine, Ain Shams University

Prof. Dr. Yousry Aboelnaga Abdelhamid

Professor of Neurology
Faculty of Medicine, Ain Shams University

Dr. Mona Mokhtar Wahideldin

Lecturer of Neurology
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2021

معدل حدوث انقطاع النفس وعدم انتظام ضربات القلب أثناء النوبات الصرعية

رسالة

توطئة للحصول علي درجة الدكتوراه في طب المخ والأعصاب مقدمة من

الطبيب / راضي يوسف بدروس قلدس بكالوريوس الطب و الجراحة ماجستير طب المخ والأعصاب تحت إشراف

أ.د/ محمد أسامة عبد الغنى

أستاذ طب المخ والأعصاب كلية الطب- جامعة عين شمس

أ.د/ نجلاء محمد الخياط

أستاذ طب المخ والأعصاب كلية الطب- جامعة عين شمس

أ.د/ أحمد عبد المنعم جابر

أستاذ طب المخ والأعصاب كلية الطب- جامعة عين شمس

أ.د/ يسري أبو النجا عبد الحميد أبو النجا

أستاذ طب المخ والأعصاب كلية الطب- جامعة عين شمس

د/ / مني مختار وحيد الدين

مدرس طب المخ والأعصاب كلية الطب- جامعة عين شمس كلية الطب جامعة عين شمس جامعة عين شمس

سورة البقرة الآية: ٣٢

First, I wish to express my deep thanks, sincere gratitude to GOD, who always helps me, cares for me and grants me the ability to accomplish this thesis.

Really I can hardly find the words to express my gratitude to **Prof. Dr.**Mohamad Ossama Abdulghani, Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I am eternally grateful to **Prof. Dr. Naglaa Mohamed El Khayat**, Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for her help and keep support, without her help this work would have never been completed. I am deeply indebted to her for her scrutiny, her comments and suggestion and her deep interest in the subject.

I am eternally grateful to **Prof. Dr. Ahmed Abdulmonem Gaber**, Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for his help and keep support, without his help this work would have never been completed. I am deeply indebted to him for his scrutiny, his comments and suggestion and his deep interest in the subject.

I am eternally grateful to **Prof. Dr. Yousry Abo-Elnaga Abd-Elhamid,** Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for his help and keep support, without his help this work would have never been completed. I am deeply indebted to him for his scrutiny, his comments and suggestion and his deep interest in the subject.

I would like to express my deepest gratitude to **Dr. Mona Mokhtar Wahideldin,** Lecturer of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for her kind advice support and valuable supervision and her great effort throughout this work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

CONTENTS

Title	Pag	e
List of Abbre	viations	I
List of Tables	s I	Π
List of Figures		Ί
Introduction		1
Aim of the w	ork	6
Review of Li	terature	7
Chapter (1):	The Interrelation between Sleep and Epilepsy	7
Chapter (2):	Sudden unexpected death and cardiorespiratory events in epilepsy	:5
Patients and methods		2
Results	5	7
Discussion	8	6
Summary and Conclusion		8
Recommenda	ations10	3
References	10	4
Appendix	13	0
الملخص العربي		. –

LIST OF ABBREVIATIONS

AEDs..... Antiepileptic drugs

ASDS Automated seizure detection systems

AVM Arteriovenous malformation

Bpm Beats per minute

CO2..... Carbon dioxide

CPAP..... Continuous positive airway pressure

CPS..... Complex partial seizures (CPS)

DRE Drug resistant epilepsy

ECG..... Electrocardiography

EEG..... Electroencephalography

EMG..... Electromyography

FBTCS..... Focal onset to bilateral tonic-clonic seizures

Fig..... Figure

FOA Focal onset aware

FOIA..... Focal onset with impaired awareness

GABA..... Gamma-Amino butyric acid

GTCs Generalized onset tonic-clonic seizures

HT..... Hydroxytryptamine

ICA Ictal central apnea

ICSD-2..... International Classification of Sleep Disorders-2

ILAE..... International League Against Epilepsy

JME Juvenile myoclonic epilepsy

MT 1..... Melatonin receptor 1

MT 2 Melatonin receptor 2

MORTEMUS Mortality in Epilepsy Monitoring Unit Study

N...... Number

NREM Non rapid eye movement

&List of Abbreviations

MRI Magnetic resonance imaging

NHSS...... National hospital seizure severity

OR..... Odd ratio

OSA Obstructive sleep apnea

PGES..... Postictal generalized EEG suppression

REM Rapid eye movement

SD Standard deviation

SE..... Status epilepticus

SHE...... Sleep-related hypermotor epilepsy

SpO₂...... Capillary oxygen saturation

SPSS Statistical package for Social Science

SSRIs..... Selective serotonin reuptake inhibitors

SWI..... Spike wave index

SUDEP Sudden Unexpected Death in Epilepsy

TNF- α Tumor necrosis factor alpha

LIST OF TABLES

Table No	Subjects Page
Table (1):	Distinguishing features of nocturnal events17
Table (2):	Description of clinical data of the patients58
Table (3):	MRI brain finding for whole group58
Table (4):	Seizure semiology and severity for whole group
Table (5):	State at seizure onset, epileptogenic zone and seizure lateralization for whole group60
Table (6):	Ictal EEG discharge for whole group61
Table (7):	Ictal central apnea occurrence and its duration among the patients61
Table (8):	Oxygen desaturation for whole group62
Table (9):	PGES occurrence, duration and postictal EEG amplitude
Table (10):	Demographic data and central apnea events63
Table (11):	Clinical history in relation to central apnea events
Table (12):	AED use between central apnea groups65
Table (13):	MRI Brain finding between central apnea groups
Table (14):	Association between ICA occurrence and both of seizure semiology and severity67

LIST OF TABLES

Table No	Subjects Page
Table (15):	Association between ICA occurrence and each of state at seizure onset, epileptogenic zone and seizure lateralization
Table (16):	Ictal EEG discharge between central apnea groups
Table (17):	Arrhythmia between central apnea groups70
Table (18):	Associations between oxygen desaturation and both of seizure semiology and severity71
Table (19):	Associations between oxygen desaturation and each of state at seizure onset, epileptogenic zone and seizure lateralization72
Table (20):	Demographic data and arrhythmia events73
Table (21):	Clinical history in relation to arrhythmia events
Table (22):	AED use between arrhythmia groups75
Table (23):	MRI Brain finding between arrhythmia groups
Table (24):	Associations between Arrhythmia occurrence and both seizure semiology and severity
Table (25):	Associations between Arrhythmia occurrence and each of state at seizure onset, seizure lateralization, severity and epileptogenic zone

LIST OF TABLES

Table No	Subjects Pa	ige
Table (26):	Ictal EEG discharge between arrhythmia groups	79
Table (27):	Associations between PGES occurence and seizure semiology, lateralization and epileptogenic zone	80
Table (28):	Associations between PGES occurence and ICA, oxygen desaturation and ictal arrhythmia	81
Table (29):	Correlations between seizure severity and both PGES duration and Postictal EEG amplitude	83
Table (30):	Associations between postictal EEG amplitude and each of type of seizure, state at seizure onset, epileptogenic zone and seizure lateralization	84
Table (31):	Associations between postictal EEG amplitude and ICA, oxygen desaturation and ictal arrhythmia	85

LIST OF FIGURES

Figure No	Subjects P	age
Figure (1):	Sleep related epilepsy versus REM sleep behavior disorder	-
Figure (2):	The complex interaction of epileptic seizures their treatment, and sleep disturbance	
Figure (3):	ILAE 2017 classification of seizure types	53
Figure (4):	Ictal EEG discharge in relation to PGE occurrence	
Figure (5):	Seizure severity in relation to PGE occurrence	

INTRODUCTION

Epilepsy is a chronic neurological condition representing a significant burden for the patient and the society (*Moshé*, *2015*). Epilepsy is the most common serious brain disorder worldwide. It has no age, racial, geographic or socio-economic boundaries. The prevalence of epilepsy in Europe is 8.2 per 1000 people, thus around 6.000.000 people in Europe currently have epilepsy whilst 15.000.000 people will have had epilepsy at some time in their lives (*EUCARE*, *2003*). Similar range (9.3 per 1000) was also reported in Egypt (*Khedr et al.*, *2013*).

Epilepsy can be treated very effectively with antiepileptic medication. Up to 70% of patients may become seizure free (about 60% with the first drug and a further 10% after further attempts) (*Berg and Rychlik*, 2015).

In an Egyptian study incidence of obstructive sleep apnea (OSA) in epileptic patients was studied in both controlled and refractory patients. There was no significant difference in number of patients having OSA between the refractory epilepsy and the medically controlled epilepsy group. The frequency of OSA was found to be 10% in patients with controlled epilepsy, while its frequency in patients with refractory epilepsy was found to be 16.7%. Interestingly, O2 desaturation nadir was significantly higher in refractory than in controlled patients (*Rashed et al.*, 2019).