

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Tacrolimus Loaded Polymeric Nanoparticles for the Treatment of Psoriasis

A Thesis submitted

By

Salma Abdel Aziz Mohammad Fereig

Bachelor degree of pharmaceutical sciences and drug design, 2014, Ain Shams University

Teaching Assistant, Department of Pharmaceutics and Pharmaceutical Technology Faculty of Pharmacy, the British University in Egypt

For the partial fulfilment of Master Degree in Pharmaceutical Sciences (Pharmaceutical technology)

Under the Supervision of

Assoc. Prof. Dr. Mona Mohamed Ahmed Abdel-Mottaleb

Associate Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy- Ain Shams University

Assoc. Prof. Dr. Mona Gamal Arafa

Associate Professor of Pharmaceutics and Pharmaceutical Technology Faculty of pharmacy- British University in Egypt.

Dr. Ghada Mamdouh ElZaafarany

Lecturer of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy - Ain Shams University

2021

-1

<u>Acknowledgements</u>

First of all, "All the praises and thanks to ALLAH, the most merciful, who has guided us to this, and never could we have found guidance, were it not that ALLAH had guided us".

I would like to express my gratitude to my dearest professor Dr. Mona Mohamed Ahmed Abdel-Mottaleb, Associate professor of pharmaceutics and industrial pharmacy, Ainshams university, for her support, guidance, time, patience and effort all through this thesis work. She never failed to support me and give me her valuable time whatever she was going through. I will never forget her advices through my entire career life. I do owe her all my success and knowledge in science.

I would like to profoundly thank my dearest professor Dr. Mona Gamal Arafa, Associate professor of pharmaceutics and pharmaceutical technology, the British university in Egypt, for believing in me from the beginning. I would have never been in the academic career if it hadn't been for her recommendation and support after Allah's will. She never held back her knowledge, support or valuable advice regarding research or teaching. I would also like to thank her for standing by my side during the sickness of my son.

-1

I would like to deeply thank my dear professor **Dr. Ghada**Mamdouh EL-Zaafarany, Lecturer of pharmaceutics and industrial pharmacy, Ainshams university, for her effort, support and guidance which helped me improve this work and present it way better than my expectations.

_ |

I would like to express my sincere gratitude to my family; my Sherifa Mahmoud Affifi and **AbdelAzíz** Muhammad Fereig. I owe them everything. They have always been my role models. I would have never been here without their kindest and most sincere support and consideration from the first day of my life till now. May Allah keep them safe and at good health, my kindest and most supportive husband; Ahmad Zaky El-Menawy who always stood by my side in every possible way and supported me to fulfill my dreams since I was an undergraduate student, My mother-in-law, Zeinab Ibrahim Youssif, who was always a second mother and supporter, my beloved sister; Yasmeen AbdelaAziz Fereig, who was always my supporter since our childhood, and my second sister and lifetime companion, Mahitab Bayoumi, for her endless support in career and life all through our friendship.

I would like to deeply thank all my professors at the pharmaceutics department at Ainshams university. I have always been and will always be proud to be your student.

Your passion and dedication to science inspired me all through my career life.

_ |

I would like to express my sincere gratitude to **Professor Dr**. **Mohey ElMazar**, Dean of the faculty of pharmacy, the British university in Egypt, for his kind support, guidance and patience as a second father to every staff member and his special understanding and support during the sickness of my young son.

I also like to thank all the staff members, professoers and colleagues, of the department of pharmaceutics and pharmaceutical technology and all my colleagues at the British university in Egypt for their continuous support and aid.

My deepest thank to all my friends who never hesitated to give me their support and advice.

Dedication

I would love to sincerely dedicate this work to my beloved sons,

Ali and Zeineldeen Ahmad Zaky

I wish I could make you proud of your mother who loves you both more than you can ever imagine. May Allah keep you always safe and in good health.

-1

Item	Page
List of abbreviations	I
List of tables	IV
List of figures	VI
Abstract	XI
General introduction	1
Scope of work	20
Chapter I: Tacrolimus-loaded chitosan nanoparticles prepared using a modified ionic gelation technique	
Introduction	22
Materials	29
Equipment	30
Methods	
1. Ultra performance liquid chromatographic (UPLC) analysis of tacrolimus	31
2. Preparation of tacrolimus-loaded chitosan nanoparticles	32
3. Particle characterization	34
4. Entrapment efficiency (EE%) and drug loading capacity (DL%)	34
5. <i>In vitro</i> drug release study	35
6. <i>Ex-vivo</i> skin permeation and deposition study	35
7. Rheology testing	36
8. Microscopic examination	37
9. Lyophilization of tacrolimus-loaded chitosan nanoparticles	37
9.1. Fourier transform infrared (FT-IR) analysis	37
9.2. X-ray diffraction (XRD) analysis	38
10. Stability studies	38
11. <i>In vivo</i> testing of tacrolimus nanoparticles anti-psoriatic effect on imiquimod (IMQ)-induced animal model	38
12. Statistical analysis	41

Results and discussion	
Ultra performance liquid chromatographic (UPLC) analysis of tacrolimus	42
2. Particle size (PS) and polydispersity index (PDI) analysis	47
3. Zeta potential	54
4. Entrapment Efficiency (EE%) and drug loading capacity (DL%)	55
5. <i>In vitro</i> drug release study	59
6. Ex-vivo skin permeation and deposition study	61
7. Rheology testing	64
8. Microscopic examination	65
9. FT-IR analysis	66
10. X-ray diffraction analysis	68
11.Stability Studies	69
12. <i>In vivo</i> study of the antipsoriatic effect of tacrolimus nanoparticles on imiquimod (IMQ)-induced animal model	70
Conclusions	79
Chapter II: Lecithin-chitosan hybrid nanoparticles incorporating tacrolimus using a modified formulation technique.	
Introduction	81
Materials	83
Equipment	84
Methods	
1. Preparation of tacrolimus-loaded lecithin-chitosan hybrid nanoparticles	85
2. Particle characterization	87
3. Entrapment efficiency (EE%) and drug loading capacity (DL%)	88
4. <i>In vitro</i> drug release study	88
5. <i>Ex-vivo</i> skin permeation and deposition study	89
6. Microscopic examination	89
7. Lyophilization of tacrolimus-loaded chitosan nanoparticles	89
7.1. Fourier transform infrared (FT-IR) analysis	89

7.2. Differential scanning calorimetry (DSC)	90
8. Stability studies	90
9. <i>In vivo</i> testing of antipsoriatic effect of tacrolimus hybrid nanoparticles on imiquimod (IMQ)-induced animal model	90
10.Statistical analysis	91
Results and discussion	
1. Preliminary studies	92
2. Particle size (PS) and polydispersity index (PDI) analysis	94
3. Zeta potential	101
4. Entrapment Efficiency (EE%) and drug loading (DL%)	103
5. <i>In vitro</i> drug release study	106
6. Ex-vivo skin permeation and deposition study	108
7. Microscopic examination	112
8. FT-IR analysis	113
9. Differential scanning calorimetry (DSC)	115
10. Stability Studies	116
11. In vivo study of the antipsoriatic effect of tacrolimus nanoparticles on imiquimod (IMQ)-induced animal model	117
Conclusions	125
Chapter III: Gold nanoparticles hybridized with chitosan and lecithin-chitosan nanoparticles loaded with tacrolimus	
Introduction	127
Materials	130
Equipment	131
Methods	
Preparation of hybridized formulations	132
2. Characterization of the nanoparticles	
2.1. Particles size (PS), polysidpersity index (PDI) analysis and zeta potential	133
2.2. Morphological examination	
2.2.1. Visual examination of nanoparticles	134
2.2.2. Elemental mapping by TEM	134

2.3. X-ray diffraction analysis	134
3. <i>In vivo</i> testing of antipsoriatic effect on imiquimod (IMQ)-induced animal model	135
4. Statistical analysis	137
Results and discussion	
1. Formulation results	138
1.1. Particle size (PS) and polydispersity index (PDI) analysis	139
1.2. Zeta potential	140
2. Microscopic examination	
2.1. Morphological examination of nanoparticles	141
2.2. Elemental mapping	144
3. X-ray diffraction analysis	146
4. <i>In vivo</i> study of the antipsoriatic effect of tacrolimus nanoparticles and gold-hybridized tacrolimus nanoparticles on imiquimod (IMQ)-induced animal model	147
Conclusions	160
Future perspective	162
Summary	164
References	171
Appendix	
Arabic Summary	