

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

PATTERNS OF ANTIMOCROBIAL USE AND ITS RESISTANCE PREVALENCE

(STUDY AT AIN SHAMS UNIVERSITY SPECIALIZED HOSPITAL "ASUSH")

Submitted By Nourhan Hussein Abdo Ali

B. Sc. of Pharmaceutical Science, Faculty of Pharmacy, Cairo University, 2013

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Medical Sciences
Institute of Environmental Studies and Research
Ain Shams University

APPROVAL SHEET

PATTERNS OF ANTIMOCROBIAL USE AND ITS RESISTANCE PREVALENCE

(STUDY AT AIN SHAMS UNIVERSITY SPECIALIZED HOSPITAL "ASUSH")

Submitted By Nourhan Hussein Abdo Ali

B. Sc. of Pharmaceutical Science, Faculty of Pharmacy, Cairo University, 2013

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Medical Sciences

This thesis was discussed and approved by:

Name Signature

1-Prof. Dr. Lamia Fouad Fathy Abdel Megid

Prof. of Medical Microbiology and Immunology

Faculty of Medicine Ain Shams University

2-Prof. Dr. Wafaa Khalil Zaki

Prof. of Medical Microbiology and Immunology

Faculty of Medicine Ain Shams University

3-Prof. Dr. Eman Mohamed Amin

Prof. of Microbiology Faculty of Science

Ain Shams University

Consultant of Microbiology, Ain Shams Specialized Hospital

PATTERNS OF ANTIMOCROBIAL USE AND ITS RESISTANCE PREVALENCE

(STUDY AT AIN SHAMS UNIVERSITY SPECIALIZED HOSPITAL "ASUSH")

Submitted By Nourhan Hussein Abdo Ali

B. Sc. of Pharmaceutical Science, Faculty of Pharmacy, Cairo University, 2013

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Medical Sciences

Under The Supervision of:

1-Prof. Dr. Wafaa Khalil Zaki

Prof. of Medical Microbiology and Immunology Faculty of Medicine Ain Shams University

2-Prof. Dr. Gehan Mohamed Fahmy

Prof. of Clinical Microbiology Infection Control Consultant Ain Shams Specialized Hospital

2021

سورة البقرة الآية: ٣٢

First and foremost, praise is to Allah to whom I relate any success in my life.

I would like to express my deepest thanks to Prof. Dr. Wafaa Khalil Zaki for her guidance, great support and constant advice. It was a real privilege and honor for me to work under her supervision.

I owe special thanks, gratitude and appreciation to *Prof. Dr. Gehan Mohamed Fahmy* for her close supervision, continuous advice which gave me the best guidance during all stages of this work.

Finally, I must express my very profound gratitude to my parents and my husband for providing me with unfailing support and continuous encouragement throughout this researching and writing journey.

Nourhan Hussein abdo ali

Abstract

Introduction: Antibiotics are prescribed for treating bacterial infections. However, Excessive use of antibiotics leads to the development and spread of multidrug resistant bacteria, currently regarded as a global public health crisis threatening our ability to treat common infectious diseases.

Aim of the work: To analyze the use and prescribing patterns of antimicrobials by physicians at Ain-Shams University Specialized Hospital (ASUSH) for inpatients among different infections and to determine the prevalence of different types of bacterial resistance.

Subjects and methods: A cross-sectional study was conducted at (ASUSH). A total of 339 microorganisms isolated from several samples types were identified and studied using VITEK® 2 system. Physicians' attitudes and knowledge were assessed using a questionnaire about antibiotic resistance problem.

Results: Among (339) bacterial isolates *Klebsiella pneumoniae* was the most common isolate n=92 (27.1%), followed by *E-coli* n=60 (17.7%), *Staph coag –ve (SCONs)* n= 43 (12.7%) and *Methecillin resistant staphylococcus aureas (MRSA), Pseudomonas aeruginosa and Acinetobacter baumanni* n=33 (9.7%) for each. In this study, the majority of physicians had good knowledge about the antibiotic resistance meaning and the magnitude of that problem.

Conclusion: Strategies for control of resistant bacteria should consider variations among sample types, wards, and antibiotic resistance variability. There is a need to specifically address staff training and communication procedures for infection prevention and control with respect to drug resistant bacteria.

LIST OF CONTENTS

Title	Page
List of abbreviations	I
List of figures	III
List of tables	VI
Introduction	1
Aim of the study	4
Review of literature	٦
• Chapter (1): Antibiotic resistance	٧
 Chapter (2): Scope of the antibiotic resistance problem 	11
• Chapter (3): Risk factors for hospital	10
acquired MDR bacterial infectionsChapter (4): Priority Pathogens	۲.
methods	2٩
Results	3٣
Discussion	54

ı

List of Contents

Title	Page
Summary & Conclusion	5^
Recommendation	61
References	63
Appendices	74
Arabic summary	1-4

LIST OF FIGURES

Figure No	Title	Page
		No
Figure (1)	morphology of Acinetobacter	23
Figure (2)	the gram stain morphology of <i>E. coli</i>	24
Figure (3)	the gram stain morphology of Klebsiella pneumoniae	25
Figure (4)	morphology of Pseudomonas aeruginosa	27
Figure (5)	the gram stain morphology of Staphylococcus aureus	28
Figure (6)	distribution of the sample population according to the age	34
Figure (7)	distribution of multidrug resistant pathogens in studied patients	35
Figure (8)	incidence of MDR, XDR and PDR strains of each pathogen	38
Figure (9)	Sensitivity of Acinetobacter	38

List of Figures

Figure No	Title	Page
		No
	baumanni to commonly used antibiotics	
Figure (10)	Sensitivity of <i>E. coli</i> to commonly used antibiotics	39
Figure (11)	Sensitivity of <i>Klebsiella</i> pneumoniae to commonly used antibiotics	39
Figure (12)	sensitivity of MRSA to commonly used antibiotics	40
Figure (13)	sensitivity of <i>Pseudomonas aeruginosa</i> to commonly used antibiotics	40
Figure (14)	sensitivity of staph coag -ve to commonly used antibiotics	41
Figure (15)	distribution of multi drug resistant bacteria according to season (summer or winter)	42
Figure (16)	factors lead to antibiotic resistance	45
Figure (17)	antibiotics more borne to induce	46

List of Figures

Figure No	Title	Page
		No
	resistance	
Figure (18)	complications related to antibiotic resistance	46
Figure (19)	factors can prevent or contain antibiotic resistance	47
Figure (20)	antibiotics which should be added to hospital's restriction list	48
Figure (21)	The current level of restriction	48
Figure (22)	choice of empiric antibiotic	50
Figure (23)	How they get information about infection management	51

LIST OF TABLES

Table No	Title	Page No
Table (1)	Distribution of patients according to gender	34
Table (2)	Distribution of patients according to age	34
Table (3)	distribution of multidrug resistant pathogens in studied patients	35
Table (4)	distribution of isolated pathogens from each sample	36
Table (5)	incidence of MDR, XDR and PDR strains of each pathogen	37
Table (6)	distribution of multidrug resistant bacteria according to season (summer or winter)	41
Table (7)	Relation between department and sensitivity to antibiotics	43
Table (8)	Demographic data of the sample	44