

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Biological, Mechanical and Physical Evaluation of Glass Ionomer Functionalized with Two Different Chlorohexidine Derivatives: An in Vitro Study

A thesis submitted to Biomaterials Department, Faculty of Dentistry, Ain Shams University, in partial fulfilment of the requirements of the Master's Degree in Biomaterials

By

Shaimaa Mortada AbdEllah Hasan

B.D.S (2008) Faculty of Dentistry, Ain Shams University

Faculty of Dentistry
Ain Shams University
2021

Supervisors

Assoc. Prof. / Dina El Refaie

Associate Professor of Dental Biomaterials

Biomaterials department

Faculty of Dentistry, Ain Shams University

Dr./ Mohamed Mahmoud Kandil

Lecturer of Dental Biomaterials

Biomaterials department

Faculty of Dentistry, Ain Shams University

Faculty of Dentistry
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Assoc. Prof. Dr. / Dina El Refaie, Professor of Dental Biomaterials, Biomaterials Department, Faculty of Dentistry, Ain Shams University, for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr.** /Mohamed Mahmoud Kandil, Lecturer of Dental Biomaterials, Biomaterials Department, Faculty of Dentistry, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Shaimaa Mortada

Dedication

Words can never express my sincere thanks to **Mom & Dad** for their generous emotional support and continuous encouragement, which brought the best out of me. I owe them all every achievement throughout my life.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	vi
Review of Literature	4
1. Dental caries	4
1.1 Dental caries definition	4
1.2 Risk factors of dental caries	7
1.2.1 Epidemiology of dental caries	9
1.2.2 Dietary habits	11
1.2.3 Cariogenic microorganisms	12
1.2.4 Saliva	13
1.2.5 Anti-cariogenic effect of fluoride	14
1.2.6 Other predisposing factors	14
2. Glass ionomer	15
2.1 Composition of glass ionomer	16
2.2 Setting reaction of glass ionomer	17
2.3 The role of water	18
2.4 Fluoride release	19
2.5 Glass ionomer surface coating	20
2.6 Properties of Glass ionomer	20
2.7 Glass ionomer used in ART approach	22
2.8 Adhesion of glass ionomer	23
2.9 Bioactivity of glass ionomer	23
3. Clinical Applications of Glass Ionomer	24
3.1 Glass ionomer based fissure sealants	25
3.2 Glass ionomer based luting cement	26
3.3 Glass ionomer based tooth restorations	26

List of Contents

Title	Page No.
4. Antimicrobial agents added to glass ionomer restorations .	28
5. Modification of GIC with chlorhexidine	31
6. Biological, physical and mechanical evaluation chlorhexidine on modified GIC properties:	
6.1Antibacterial effect:	35
6.1.1 Agar disk-diffusion method	35
6.1.2 Agar well diffusion method	36
6.2 Chlorhexidine release:	37
6.3 Fluoride release:	38
6.4 Compressive strength:	39
6.5 Setting time:	42
Aim of the Study	45
Materials and Methods	46
Results	74
Discussion	119
Summary and Conclusions	127
References	131
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Materials used in the stude manufacturers and lot. number	dy, their composition, rs47
Table (2):	Factorial design and Variable	interactions53
Table (3):	Effect of different variables a	
Table (4):	Mean ± standard deviation effect (mm) for different n concentrations of different ch	
Table (5):	Mean ± standard deviation effect (mm) for different n concentrations of different derivatives	neasurement times and
Table (6):	Summary table for Mean ± s of antibacterial effect measurement times and con	standard deviation (SD) (mm) for different
Table (7):	Effect of different variables a antibacterial effect (zones of i	and their interactions on nhibition in mm)83
Table (8):	Mean ± standard deviation effect (mm) for different n concentrations of different ch	• •
Table (9):	Mean ± standard deviation effect (mm) for different n	(SD) of antibacterial
Table (10):	Summary table: Mean \pm star antibacterial effect (mm) for times and concentrations of	dard deviation (SD) of different measurement
Table (11):	Effect of different variables a	
Table (12):	Mean \pm standard deviation release ($\mu g/ml$) for different	(SD) of chlorhexidine

Table (13):	Mean ± standard deviation (SD) of chlorhexidine
	release (µg/ml) for different measurement times and
T 11 (14)	concentrations of different chlorhexidine derivatives96
Table (14):	Summary table: Mean \pm standard deviation (SD) of
	chlorhexidine release (µg/ml) for different measurement times and concentrations of different
	chlorohexidine derivatives
Table (15):	Effect of different variables and their interactions on
Table (13).	fluoride release (ppm)101
Table (16)	Mean ± standard deviation (SD) of fluoride release
1 abic (10).	(ppm) for different measurement times and
	concentrations of different chlorhexidine derivatives102
Table (17):	Mean ± standard deviation (SD) of fluoride release
	(ppm) for different measurement times and
	concentrations of different chlorhexidine derivatives105
Table (18):	Summary table Mean \pm standard deviation (SD) of
	fluoride release (ppm) for different measurement
	times and concentrations of different chlorhexidine
	derivatives
Table (19):	Effect of different variables and their interactions on
	compressive strength (Mpa)110
Table (20):	Mean ± standard deviation (SD) of compressive
	strength (Mpa) for different measurement times and
T 11 (21)	concentrations of different chlorhexidine derivatives111
Table (21):	Mean ± standard deviation (SD) of compressive
	strength (Mpa) for different measurement times and concentrations of different chlorhexidine derivatives113
Table (22).	Summary table Mean ± standard deviation (SD) of
1 able (22).	compressive strength (Mpa) for different
	measurement times and concentrations of different
	chlorhexidine derivatives
Table (23):	Mean ± standard deviation (SD) of initial setting
	time (seconds) for different concentrations of
	different chlorohexidine derivatives117

List of Figures

Fig. No.	Title F	Page No.
Figure (1):	Chemical structure of chlorhexidine	30
Figure (2a):	Glass ionomer cement: powder bott liquid.	le and water
Figure (2b):	Chlorhexidine digluconate 20% aque bottle	
Figure (2c):	Sodium hexametaphosphate powder combination with chlorhexidine	
Figure (3a):	Glass ionomer mold assembly for or release specimens	
Figure (3b):	Split mold of glass ionomer for or release specimens	
Figure (3c):	Final shape of specimen for chlorhex specimens	
Figure (4):	Antibacterial effect of GIC chlorhexidine hexametaphosphate chlorhexidine digluconate (b) of di after 7 days.	(a) and fferent conc.
Figure (5):	Size of inhibition zone for antibactesting	cterial effect
Figure (6):	Antibacterial effect of GIC chlorhexidine hexaametaphosphate	containing of different
Figure (7):	Antibacterial effect of GIC chlorhexidine digluconate of different	containing conc. after 6
Figure (8):	Spectrophotometry device for chlorher testing.	xidine release
Figure (9a):	Fluoride ion selective electrode device	68
Figure (9b):	Ion selective electrode during Fluorid	
8	testing	
Figure (10a):	Digital compressive strength testing m	
_	Specimen during compressive strength	

Figure (11a):	Vicat needle apparatus for setting time testing	. 72
Figure (11b):	Setting time testing of the specimen.	. 72
	Bar chart showing average antibacterial effect (mm) for different measurement times and concentrations of different chlorhexidine derivatives (A)	
Figure (13):	Bar chart showing average antibacterial effect (mm) for different measurement times and concentrations of different chlorohexidine derivatives (B)	. 81
Figure (14):	Line chart showing average antibacterial effect (mm) for different measurement times and concentrations of different chlorhexidine derivative.	. 82
Figure (15):	Bar chart showing average antibacterial effect (mm) for different measurement times and concentrations of different chlorhexidine derivatives (A)	
Figure (16):	Bar chart showing average antibacterial effect (mm) for different measurement times and concentrations of different chlorhexidine derivatives (B)	
Figure (17):	Line chart showing average antibacterial effect (mm) for different measurement times and concentrations of different chlorhexidine derivatives.	
Figure (18):	Bar chart showing average chlorohexidine release $(\mu g/ml)$ for different measurement times and concentrations of different chlorhexidine derivatives (A)	. 95
Figure (19):	Bar chart showing average chlorohexidine release $(\mu g/ml)$ for different measurement times and concentrations of different chlorhexidine derivatives (B) .	. 99
Figure (20):	Line chart showing average chlorhexidine release $(\mu g/ml)$ for different measurement times and concentrations of different chlorhexidine derivatives.	100

Figure (21):	Bar chart showing average fluoride release (ppm) for different measurement times and concentrations of different chlorhexidine derivatives (A)	104
Figure (22):	Bar chart showing average fluoride release (ppm) for different measurement times and concentrations of different chlorhexidine derivatives (B)	
Figure (23):	Line chart showing average fluoride release (ppm) for different measurement times and concentrations of different chlorohexidine derivatives.	109
Figure (24):	Bar chart showing average compressive strength (Mpa) for different measurement times and concentrations of different chlorohexidine derivatives (A)	112
Figure (25):	Bar chart showing average compressive strength (Mpa) for different measurement times and concentrations of different chlorhexidine derivatives (B)	115
Figure (26):	Line chart showing average compressive strength (Mpa) for different measurement times and concentrations of different chlorhexidine derivatives.	116
Figure (27):		
Figure (28):		