

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Metaphyseal Sleeves and Metaphyseal Cones in Revision Total Knee Arthroplasty

A Systematic Review

Submitted for Partial Fulfillment of Master Degree in **Orthopedic Surgery**

By

Mohamed Ahmed Abdel-Fatah El Bahat M.B.B.Ch,

Under Supervision of

Prof. Dr. Wael Ahmed Mohamed Nassar

Professor of Orthopedic Surgery Faculty of Medicine, Ain Shams University

Prof. Dr. Radwan Gamal El-Deen Abdel Hamid

Associate Professor of Orthopedic Surgery Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Wael Ahmed**Mohamed Massar, Professor of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr.**Radwan Gamal El-Deen Abdel Hamid,

Associate Professor of Orthopedic Surgery, Faculty

of Medicine, Ain Shams University, for his sincere

efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Mohamed Ahmed Abdel-Fatah El Bahat

Tist of Contents

Title	Page No.
List of Tables	4
List of Figures	5
List of Abbreviations	6
Introduction	1 -
Aim of the Work	9
Review of Literature	
Anatomy and Biomechanics of Knee	10
Bone Defects in Revision Total Knee	17
Type of Implants in Revision Total Knee Arthropla	asty22
Metaphyseal Fixation in Revision Total Knee	26
Materials and Methods	36
Results	40
Discussion	53
Conclusion	61
Summary	
References	
Arabic Summary	

Tist of Tables

Table No	o. Title	Page No.
Table 1:	The Anderson Orthopedic Res Institute classification of bone defect revision of total knee arthroplasty	ets in
Table 2:	Summary Characteristics of the inc studies utilizing metaphyseal sleeves	
Table 3:	Baseline Characteristics of the inc studies utilizing metaphyseal sleeves	
Table 4:	Sleeves characteristics of the inc studies utilizing metaphyseal sleeves	
Table 5:	Clinical Outcomes of the included studi	es44
Table 6:	Postoperative Complications of the inc	
Table 7:	Summary Characteristics of the inc studies utilizing metaphyseal cones	
Table 8:	Baseline Characteristics of the inc studies utilizing metaphyseal cones	
Table 9:	Cones of the included studies uti metaphyseal cones	_
Table 10:	Clinical Outcomes of the included studi	es49
Table 11:	Postoperative Complications of the inc	luded 51

Tist of Figures

Fig. No.	Title Page N	0.
Figure 1:	Anatomy of the knee	11
Figure 2:	Anatomical and mechanical axes of the lower	11
1180110 20	limb	13
Figure 3:	Reference axes used for rotational alignment of	
	the femoral component while performing a total	
	knee replacement	15
Figure 4:	An osteology specimen showing proximal tibial	
J	and alignment lines being measured	16
Figure 5:	Reference axis used for rotaional aligment of	
_	tibital component while performing TKA	16
Figure 6:	Anderson Orthopaedic Research Institute	
	classification of bone defects	19
Figure 7:	(a) X-ray of a severe mediolateral instability	
	after primary TKA, (b) post operative x-ray of	
	semiconstrained revision TKA	20
Figure 8:	Types of implants used in revision TKA	
Figure 9:	Example of megaprothesis in revision TKA	25
Figure 10:	Tibial metaphyseal sleeve with proximal	
	porous coating	27
Figure 11:	Revision total knee arthroplasty for	
	periprosthetic joint infection	
	Metaphyseal sleeve in revision TKA	28
Figure 13:	To reduce the bone loss during implant	
	removal it is necessary to use different	
	techniques	
•	Metaphyseal cones	34
Figure 15:	Supplemental particulate cancellous bone	
	around the periphery between the tibia and the	
T	metaphyseal cone	
	Metaphyseal cones in revision TKA	
Figure 17:	PRISMA flow-chart	41

Tist of Abbreviations

Abb.	Full term
ACL	Anterior cruciate ligament
AORI	$ And erson\ or tho paedic\ research\ institute$
CCK system	Condylar constraint knee system
LCL	Lateral collateral ligament
MCL	Medial collateral ligament
PCL	Posterior cruciate ligament
PS	Posterior stabilizer system
RTKA	Revision total knee arthroplasty
TKA	Total knee arthroplasty

Introduction

In revision total knee arthroplasty (TKA) cases, three difference zones of fixation are identified in both femur and tibia.

Zone one referes to epiphysis, joint surface and proximal cortical bone, zone two refers to metaphysis and zone three refers to diaphysis. In revision cases zone one always compromised while zone two and three should be structurally stable to support revision prosthesis. Zone one can be reconstructed by screws and polymethyl methacrylate (PMMA). Cement is utilized with defect less than 5-10 millimeters (mm). Zone two defects can be handled by prosthetic wedge and blocks. They are useful in 5-20 millimeter (mm) unicondylar defect and not sufficient for larger bone defect, while in zone three structural stability can be achieved intramedullary fixation through by stemmed componenent of various shape or length (1).

The complications of revision total knee arthroplasty can be divided into two major categoris, septic and aseptic failure, the latter, namely aseptic failure, includes instability, loosening, device fracture, osteolysis, wear and periprostehtic fracture (2).

The use of metaphyseal sleeves and cones has increased in revision total knee arthroplasty. Metaphyseal sleeves are able to provide axial support, rotation stability and bone fixation due to bone integration and they can be used in type two A, B and type

orthopaedic research institute (AORI) three, Anderson classification (3).

Metaphyseal cones are considered to be effective option in management of bone defects in type two and three metaphyseal defects. Divided into titanium cones and tantalum cones, the advantage of tantalum cones that there are multiple shapes and sizes to accomoodate a large portion of bone defects in moderate to severe range of bone loss. While advantage of titanium cones include better axial alignment due to uses of intramedullary fixation guided bone preparation system ⁽⁴⁾.

AIM OF THE WORK

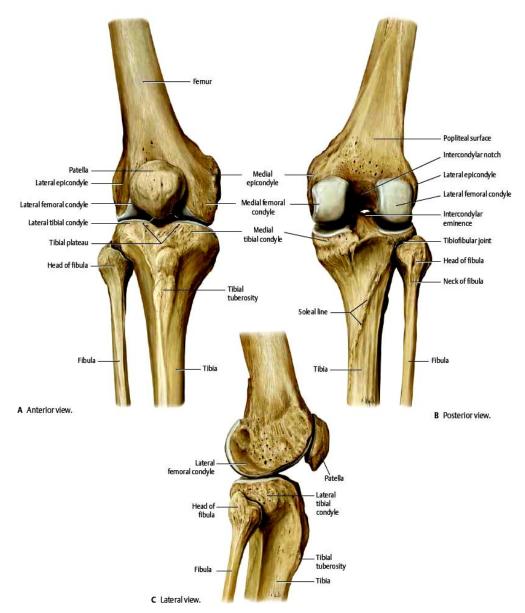
The purpose of this study is to evaluate the uses of metaphyseal sleeves and metaphyseal cones in revision TKA according to indications, AORI classification institute, technique difficulty, operative time and fixation durability (results and complications).

Chapter 1

ANATOMY AND BIOMECHANICS OF KNEE

A- Bone Anatomy of the Knee:

The articular surfaces of the knee are represented by the medial and lateral femoral condyles which are articulating with the corresponding tibial plateau. The medial tibial plateau is biconcave, unlike the lateral tibial plateau that is concave on the front plane and convex in the sagittal plane. However, both femoral condyles are convex in the frontal and sagittal plane. The two tibial surfaces are divided by the intercondylar eminence which contains two tubercles on which the cruciate ligaments have their origin, thus contributing to fix the femur on the tibia (fig. 1) ⁽⁵⁾.


Intra-articular structure

Consists of anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL), medial and lateral menisci.

Medial side of the knee

The medial collateral ligament (MCL) originates from the medial femoral epicondyle, anterioinferior border of the adductor tubercle and inserted into upper medial surface of the tibia and composed of two layers: superficial and deep. The superficial component of the MCL is the main structure that counteracts to the stresses in valgus and external rotation and it offers a weak

resistance to anterior translation of the tibia. The posterior oblique and deep medial collateral ligament fibres seem to play a secondary role as stabilizers ⁽⁵⁾.

Figure 1: Anatomy of the knee. **(A)** Anterior view, **(B)** Posterior view, **(C)** Lateral view ⁽⁵⁾.

Lateral side of the knee

The lateral collateral ligament (LCL) originates from the lateral femoral epicondyle and has an oblique course joined by the biceps femoris tendon forming the conjoint tendon, which inserts at the head of the fibula. It prevents the deviation in varus as well as the excessive external rotation of the knee. The LCL is tight when the knee is extended; as consequence varus laxity increases when this joint is flexed ⁽⁵⁾.

The popliteus muscle originates from the lateral condyle of femur by a strong tendon called popliteus tendon and inserted on posterior surface of the proximal tibia (medial two-thirds) above the soleal line. It's function is playing a role, together with the LCL in stabilizing the posterolateral corner against varus movements and tibial external rotation ⁽⁵⁾.

Biomechanics of total knee arthroplasty

These are determined by a combination of the alignment of the components and by the musculotendinous structures. The axes used for reference include the mechanical axis and the anatomical axis ⁽⁶⁾.

The mechanical axis of the lower limb is a straight line drawn from the centre of the femoral head to the centre of the ankle. The femoral mechanical axis is a straight line drawn from the centre of the femoral head to the centre of the intercondylar region. The mechanical axis of the tibia is a straight line drawn