

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Factor V Leiden (FVL), Prothrombin G20210A and MTHFR C677T Mutations among Patients of Budd-Chiari Syndrome

Thesis

Submitted for Partial Fulfillment of master Degree in Clinical Pathology

By

Ahmad Mahmoud Ahmad Mahmoud

M.B., B.Ch. Faculty of Medicine, Ain shams University

Supervised by

Prof. Dr. Afaf Abdel Aziz Abdel Ghaffar

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Prof. Dr. Mohamed Tarif Hamza

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Afaf Abdel Aziz Abdel**Ghaffar, Professor of Clinical Pathology, Faculty of Medicine Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Mohamed Tarif Hamza**, Professor of Clinical Pathology, Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am so grateful also for My Beloved Wife for her existence in my life and her continuous support.

Ahmad Mahmoud

List of Contents

Title	Page No.
List of Abbreviations	
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
Budd-Chiari Syndrome	5
Genetics of Budd-Chiari Syndrome	27
Subjects and Methods	42
Results	52
Discussion	67
Summary and Conclusion	75
Recommendations	78
References	79
Arabic Summary	

List of Abbreviations

Abb.	Full term
ACE	Angiotensin-converting enzyme
ACL	
	Alanine aminotransferase
	Antinuclear antibody
aPC	•
APTT	Activated partial thromboplastin time
	Amplification refractory mutation system
	Aspartate aminotransferase
	Budd Chiari syndrome
COS	•
	Computed tomography
	Deoxyribonucleic acid
DVT	Deep vein thrombosis
EASL	European Association for the Study of Liver
FVL	Factor V Leiden
GZ	Gray zone
HBG	Hemoglobin
HCC	Hepatocellular carcinoma
INR	International normalized ratio
IVC	Inferior vena cava
JAK2	Janus kinase 2
MPDs	Myeloproliferative disorders
MRI	Magnetic resonance imaging
MTHFR	Methylene tetrahydrofolate reductase
NC	Negative control
PC	
PCR	Polymerase chain reaction
PE	Pulmonary embolism
PGM	Phosphoglucomutase
PLT	Platelet
PT	Prothrombin time

List of Abbreviations Cont...

Abb.	Full term
PTT	Partial thromboplastin time
PV	Polycythemia Vera
RBCS	Red blood cells
RFLP	Restriction fragment length polymorphism
rt-PA	Recombinant tissue-type plasminogen activator
SNP	Single nucleotide polymorphism
SVT	Splanchnic vein thrombosis
TIPS	Transjugular intrahepatic portacaval shunt
VTE	Venous thromboembolism
WBC	White blood cell

List of Tables

Table N	o. Title	Page No.
Table (1): Table (2):	Workup in newly diagnosed Budd-Chiari patie Temperature profile	
Table (3):	Interpretation of genotyping results using neratios.	ormalized
Table (4):	Distribution of the studied cases accodemographic data, clinical presentation and ris	
Table (5):	Distribution of the studied cases according to HBG, WBC, PLT, ANA, ACL IgM, ACL DEF, PS DEF, AT III DEF, FVLM, PGM, MT JAK2 M	IgG, PC THFR and
Table (6):	Comparison between Negative FVLM (no. FVLM (no. =23) regarding risk factors	
Table (7):	Comparison between Negative FVLM (no. FVLM (no. =23) regarding HBG, RBCS, WANA, ACL IgM, ACL IgG, PC DEF, PS DE III DEF	BC, PLT, F and AT
Table (8):	Comparison between Negative FVLM (no. FVLM (no. =23) regarding PGM, MTHFR and	,
Table (9):	Comparison between Negative JAK2 M (no. JAK2 M (no. =6) regarding Smoking, Th Abortion, Hormonal Rx and Pregnancy	rombosis,
Table (10):	Comparison between Negative JAK2 M (no. JAK2 M (no. =6) regarding HBG, RBCS, W ANA, ACL IgM, ACL IgG, PC DEF, PS DE III DEF	BC, PLT, F and AT
Table (11):	Comparison between Negative JAK2 M (no. JAK2 M (no. =6) regarding PGM, MTHFR an	,
Table (12):	Comparison between Negative MTHFR (no. MTHFR (no. =17) regarding Smoking, Th Abortion, Hormonal Rx and Pregnancy	rombosis,

List of Tables Cont...

Table N	o. Title	Page No.
Table (13):	MTHFR (no. =17) regards ANA, ACL IgM, ACL Ig	gative MTHFR (no. =18) and ing HBG, RBCS, WBC, PLT, G, PC DEF, PS DEF and AT
Table (14):		gative MTHFR (no. =18) and ing PGM, MTHFR and JAK2

List of Figures

Fig. No.	Title Pa	ge No.
Figure (1):	Schematic drawing of the types of Born Chiari syndrome according to the location the obstruction — truncal type (I) obstruction of the IVC (±HV), radicular (II) with obstruction of HV, venoocclustype (III) with obstruction of secontrilobular veins	on of with type asive mall
Figure (2):	Budd-Chiari syndrome: gross microscopic appearance of liver and her vein lesions	oatic
Figure (3):	Site of venous obstruction in veno-occludisease, Budd-Chiari syndrome, congestive hepatopathy	and
Figure (4):	Sonogram showing hepatic vein throm with new vessels forming	
Figure (5):	A proposed diagnostic and therape work-up for the patient with Budd Ch syndrome (BCS)	niari
Figure (6):	The homocysteine cycle	
Figure (7):	HTHFR synthesis and activation	
Figure (8):	Steps of DNA extraction	
Figure (9):	TaqMan probe multiplex assay	46
Figure (10):	Positive heterozygous mutation, do curve represent VIC dye (wild gene) w continuous curve represent FAM (mutant gene)	otted vhile dye
Figure (11):	Slan 96P real time PCR System	47
_	Distribution of the studied cases accord to demographic data, clinical presenta and risk factors	ding tion

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (13):	The difference between (Negative and JAK2 M) regarding HBG	
Figure (14):	The difference between (Negative and JAK2 M) regarding RBCS	JAK2 M
Figure (15):	The difference between (Negative and JAK2 M) regarding WBC	
Figure (16):	The difference between (Negative and JAK2 M) regarding PLT	

Introduction

CS is not a primary disease of the liver parenchyma but subsequent liver dysfunction following obstruction of hepatic veins or the suprahepatic Inferior Vena Cava, hepatic venous outflow obstruction results in an elevated sinusoidal pressure and leads to hepatic congestion (*Oblitas et al.*, 2020).

Usually, congestion is followed by subsequent centrilobular fibrosis and nodular regenerative hyperplasia that lead to chronic liver dysfunction and cirrhosis; in some instances, however, it results in fulminant hepatic failure requiring emergency liver transplantation (Robertson and Hayes, 2015).

There is an interesting but not as yet understood difference in the etiology and epidemiology of this condition in the West and East (Li et al., 2019).

The role of the G20210A mutation of the prothrombin gene appears to be negligible in BCS patients (Valla, 2017; Qi et al., 2016).

Other recently identified inherited risk factors have not been extensively studied in BCS patients (Li et al., 2019).

Thrombophilic abnormalities and clonal disorders of hematopoiesis, such as Philadelphia chromosome negative MPNs both overt and occult, are etiological factors in a significant proportion of BCS cases (Valla, 2017).

The prevalence of C677T MTHFR polymorphism appears to be increased in BCS patients worldwide, but a causal association has not been clearly established in European patients (Qi et al., 2016).

Many studies from western countries have revealed that primary BCS can be regarded as a multifactorial disease in which several prothrombotic conditions additively predispose patients to develop thrombosis in hepatic veins (Qi et al., 2016).

Common prothrombotic conditions associated with BCS include inherited and acquired hypercoagulable states (*Oblitas* et al., 2020).

BCS is a life-threatening group of disorders resulting from hepatic venous outflow obstruction, that may occur at the level of the hepatic venules (hepatic veno-occlusive disease), the large hepatic veins, inferior vena cava (IVC), or the right atrium (congestive hepatopathy) (Robertson and Hayes, 2015).

The clinical presentation is highly variable; from being asymptomatic to fulminate, acute, sub-acute, and chronic subtypes depending on duration of the disease, biochemical disturbance, and liver histology (*Robertson and Hayes*, 2015).

FVL (rs6025) is a variant of human factor V which causes an increase in blood clotting (hypercoagulability). Due to this mutation, Protein C, an anticoagulant protein which