

Assessment of Dose Distributions in a Commercial Radiation Treatment Planning System for Conventional and Conformal Techniques.

A Thesis

submitted in partial fulfillment for requirements of the degree of M.Sc. in Physics, 2019, from Ain Shams University

By

Adel Farahat Labeeb, B.SC.

Supervised By

Prof. Dr . Soad Abd El-Monem El Fiki Prof.Dr. Khaled Mohamed
EL Shahat

Professor of Radiation Physics, Professor of Medical Radiation Physics,

Faculty of Science, Oncology Department

Ain Shams University Faculty of Medicine, Al Azhar University

(2019)

Ain Shams University

Faculty of Science

Physics Department

Degree: M.Sc. degree in Physics.

Title: Assessment of Dose distributions in a Commercial

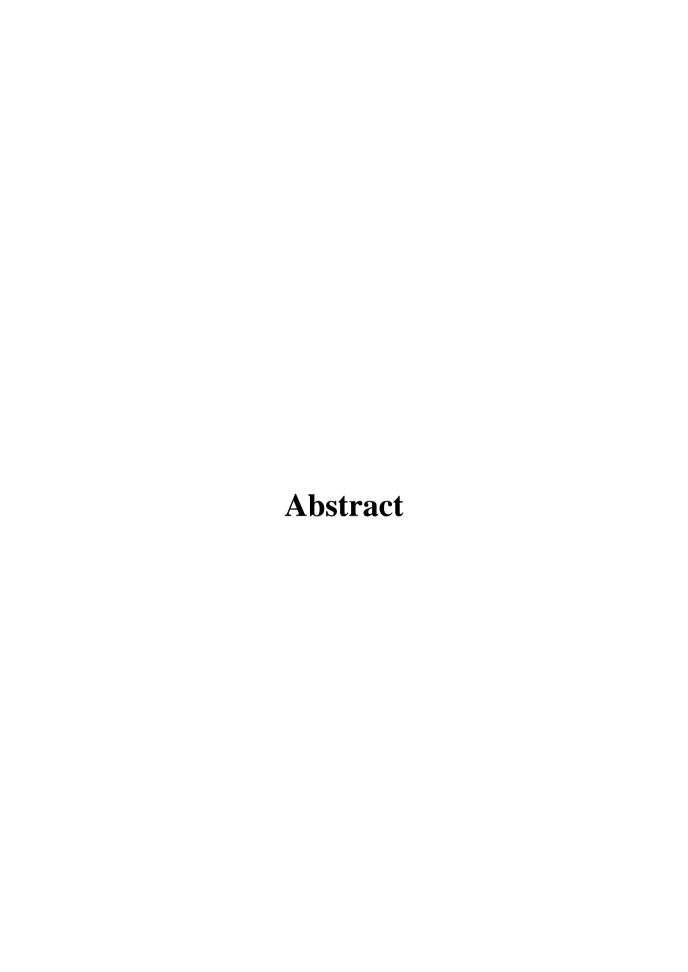
Radiation Treatment Planning System for Conventional and Conformal Techniques.

Name: Adel Farahat Labeeb

Al Azhar University

Thesis Advisors	Approved
Prof.Dr.Soad Abd EL-Monem El-Fiki	
Physics Department, Faculty of Science,	
Ain Shams University	
Prof.Dr. Khaled Mohamed EL Shahat	
Oncology Department, Faculty of Medicine,	

ACKNOWLEDGEMENTS


I am greatly indebted to **Prof. Dr.Soad El Fiki**, **Prof. of Radiation physics Faculty of Science**, **Ain Shams University** for his guidance, valuable advice and continuous supervision as well as stimulating the discussions throughout this work.

I am greatly indebted to **Prof.Dr. Khaled M. El Shahat, Prof of Medical Radiation Physics Faculty of Medicine**, **AlAzhar University** for suggesting the point of investigation, his guidance, valuable advice and continuous supervision as well as stimulating the discussions throughout this work. He plays a main source of reliable knowledge and powerful push to this work

I Thank and gratitude For Those Working in Radiotherapy department at the International medical center (IMC) where the study was conducted, because they give me the time.

FINALLY, I THANK ARE ALSO DUE TO MY COLLEAGUES.

Grateful acknowledgment and deepest thank to my Family for their support and cooperation.

Abstract:-

Surprisingly, the presentation of errors in treatment planning calculations in the treatment planning process itself is uncommon. Doing first things first, there is conceptual logic in an exploration of the uncertainties that originate in treatment planning itself, which is the objective of this thesis, and in a presentation of these uncertainties in treatment planning. During the actual radiation treatment phase, the beam parameters calculated by the treatment planning system (TPS) can be used for the patient and the linac setup, Any deviation in these planned beam parameters would lead to a difference in the dose delivered to the patient.

Summarizing this introductory section, it has been shown that knowledge about the accuracy of treatment planning calculations is a crucial requirement for the enhancement of treatment planning capabilities, and thus an essential condition to achieve the expected benefits of conformal radiotherapy treatment.

CONTENTS

Acknowledgements	.i
Abstract	.ii
Summary	.iii
Chapter 1 Introduction and Literature Review	1
1.1 Clinical x-ray beams	1
1.1.1 Physics of X-Ray production	1
1.1.2 Linear accelerator	3
1.2Literature Review	6
1.3 Aim of Current study	10
Chapter 2 Optimization of Conformal Radiotherapy	13
2.1 Introduction	13
2.1.1 At Most Everything is uncertain	15
2.1.2 Random and systematic errors	16
2.2 Precision VS. Accuracy	17

2.3 Conformal radiotherapy requires treatment planning	19
2.4 Practical approach	24
2.5 Verification of treatment planning dose calculations	25
2.6 Qualitative indicators of treatment planning	30
Chapter 3 Material and Methods	34
3.1 Material	34
3.1.1 Medical Linear Accelerator	34
3.1.2 Dosimetric instrumentations	39
3.1.3 Computerized RTPS	49
3.2 Methods	54
3.2.1 To test and quality control for beam in TPS	54
3.2.2.Measurement instrumentation and techniques	57
3.2.3.Test cases	60
Test case 1: Water phantom, 100-cm SSD, open square field	60
Test case 2: Water phantom, extended SSD 120 cm, open square field	62
Test case 3: Water phantom, 100-cm SSD, open rectangular field	63
Test case 4: Water phantom, 100-cm SSD, wedged square fields	65

Test case 5: Water phantom, 100-cm SSD, mantle field	67
Test case 6: Water phantom, open square field, isocentric	70
Setupincidence	
Test case 7: Water phantom, 100-cm SSD, open square field, oblique	72
Test case 8: Water phantom, 100-cm SSD, asymmetric jaws, half beam and 45° wedge	75
Test case 9: Water phantom, 100-cm SSD, wedged field, oblique incidence	77
Test case 10: Water phantom, 100-cm SSD, MLC field	79
Chapter 4 Results and Discussions	80
4.1 Water phantom system	81
4.1. A. Case 1, open square field	81
4.1. B. Case2, extended SSD	91
4.1. C. Case3, open rectangular field	94
4.1. D. Case4, wedged square fields	98
4.1. E. Case5, Mantle field	105
4.1. F. Case 6, iso-centric setup	108
4.1.G. Case 7, oblique incidence	112
4.1.H. Case 8, asymmetric jaws, half beam and 45° wedge	118

4.1.I. Case 9, wedged field, oblique incidence	123
4.1.J. Case 10, Multileafe collimator MLC	127
4.1.K. Monitor unit MU	129
4.2. Measurements of beam profile for field size 6x6 cm ²	132
4.2.1 Optimization of Conformal Radiotherapy for Lung cancer patients	134
4.2.2Optimization of Conformal Radiotherapy of Prostate cancer patients	142
Conclusions	153
References	154

	<u>List of Tables</u>	
I	Atypical set of parameters for water scans	28
3.1	TG-53 recommendations on the frequency of treatment planning computers QA	55
4.1	the acceptable criteria for an external beam dose calculation for a different dose situation	80
4.1	Case 1, open square field, 6-MV beam and field size 5 cm x 5 cm profile Data	82
4.2	Case 1, pen square field, 6-MV beam and field size 20 cm x 20 cm profile data	83
4.3	Case 1, open square field, 18-MV beam and field size 5 cm x 5 cm profile Data	84
4.4	Case 1, open square field, 18-MV beam and field size 20 cm x 20 c profile data	85
4.5	Case 1, open square field, 6-MV beam and field size 5 cm x 5 cm Off-axis profile data	86
4.6	Case 1, open square field, 6-MV beam and field size 20 cm x 20 cm Off-axis profile data	86
4.7	Case 1, open square field, 18-MV beam and field size 5 cm x 5 cm off-axis profile data	87
4.8	Case 1, open square field, 18-MV beam and field size 20 cm x 20 c Off-axis profile data	87

4.9	Case 2, open square field, 6-MV beam and field size 16.6 cm x 16.6 cm for extended SSD profile data	91
4.10	Case 2, open square field, 18-MV beam and field size 16.6 cm x 16 cm for extended SSD profile data	92
4.11	Case 3, open rectangular field, 6-MV beam and field size 5 cm x 20 cm profile data	94
4.12	Case 3, open rectangular field, 6-MV beam and field size 20 cm x scm profile data	95
4.13	Case 3, open rectangular field, 18-MV beam and field size 5 cm x 2 cm profile data	95
4.14	Case 3, open rectangular field, 18-MV beam and field size 20 cm x cm profile data	96
4.15	Case 4, 45-degree wedged field, 6-MV beam and field size 6 cm x cm profile data	98
4.16	Case 4, 45-degree wedged field, 6-MV beam and field size 20 cm 20 cm profile data	99
4.17	Case 4, 60-degree wedged field, 6-MV beam and field size 15 cm 15 cm profile data	99
4.18	Case 4, 45 degree wedged field, 18-MV beam and field size 6cm x cm profile data	100
4.19	Case 4, 45-degree wedged field, 18-MV beam and field size 20 cm 20 cm profile data	101
4.20	Case 4, 60-degree wedged field, 18-MV beam and field size 15 cm	101

	15 cm profile data	
4.21	Case 5, Mantle field, 6-MV beam and field size 30 cm x 30 cm profile data	105
4.22	Case 5, Mantle field, 6-MV beam and field size 30 cm x 30 cm offaxis profile data	106
4.23	Case 5, Mantle field, 18-MV beam and field size 30 cm x 30 cm profile data	106
4.24	Case 5, Mantle field, 18-MV beam and field size 30 cm x 30 cm of axis profile data	107
4.25	Case 6, open square field, 6-MV beam and field size 10 cm x 10 cm at 90 cm-SSD profile data	109
4.26	Case 6, open square field, 18-MV beam and field size 10 cm x 10 d at 80 cm-SSD profile data	110
4.27	Case 7, open square field, 6-MV beam and field size 10 cm x 10 cm at 330 degree oblique profile data.	112
4.28	Case 7, open square field, 6-MV beam and field size 10 cm x 10 cm at 305 degree oblique profile data	113
4.29	Case 7, open square field, 18-MV beam and field size 10 cm x 10 d at 330 degree oblique profile data	114
4.30	Case 7, open square field, 18-MV beam and field size 10 cm x 10 d at 305 degree oblique profile data	115
4.31	Case 8, half beam blocked, 6-MV beam and field size 10 cm x 20cm 45-degree wedge, profile data	119

4.32	Case 8, half beam blocked, 18-MV beam and field size 10 cm x 20cm,45 degree wedge, profile data	120
4.33	Case 9, 6-MV beam and field size 10 cm x 10 cm, 45-degree wedge,315 degree oblique profile data	123
4.34	Case 9, 18-MV beam and field size 10 cm x 10 cm, 45 degree wedge,315 degree oblique profile data	124
4.35	Case 10, MLC, 6-MV beam with right triangle shape profile data	127
4.36	MU calculation, Calculated and measured total scatter factor in a water phantom.	131
4.37	Evaluation of DVH for different Dose Plans using two energies (6 and 18 MV), and different arrange fields size	140
4.38	The Mean dose for Critical organs.	141
4.39	Dose volume histogram analysis for GTV	142
4.40	Dose Volume Histogram Analysis for CTV	143
4.41	Dose Volume Histogram Analysis for PTV	144
4.42	Dose volume Histogram analysis for organ at risk/normal tissues	146
	•	1

List of Figures

1.1.1.A	An illustration of bremsstrahlung process	2
1.1.1.B	A schematic diagram of spatial distribution of x-rays around a thin target	2
2.1	illustration of concepts of accuracy and precision	17
2.2	Two field, parallel opposed treatment of liver lesions	18
2.3	Three field treatment of liver lesion	19
2.4	Calculated and measured line dose profiles	29
3.1.1	Medical linear accelerator	35
3.1.2	Collimator Assembly showed upper and lower collimator and optical field dimension / distance system	36
3.1.3	Movement of Collimator system	37
3.1.4	Schematic diagram of Farmer chamber	41
3.1.5	The 0.6 CC Ionization Chamber	43
3.1.6	The standard water phantom	45

3.1.7	Solid Water Phantom	46
3.1.8	Automatic Water Phantom for Multidata System for relative and absolute dosemitry	49
3.2.1	open square field (A) the Beam's-eye view of 100-cm SSD, open square field of 20 cm x 20 cm	61
3.2.2	extended SSD (A) Model view of extended SSD 120 cm, open square field	63
3.2.3	open rectangular field (A)Beam's-eye view of 100-cm SSD, open rectangular field of 5 cm x 20 cm	64
3.2.4	wedged square fields (A) Model-view of wedged square field, 15 cx 15 cm and wedge 60 degree	66
3.2.5	mantle field (A) Block try for mantle field test case 5. (B) Model view for 30 cm x 30 cm field	69
3.2.6	isocentric setup (A) Model view for 10 cm x 10 cm field, SSD of 80 cm	71
3.2.7	oblique incidence Transversal plane, Oblique incidence with 330 degree for 6-MV	74
3.2.8	asymmetric jaws, half beam and 45° wedge	76
3.2.9	wedged field, oblique incidence (A) Model view for 10 cm x 10 cm field with 45 degree wedge, 6-MV	78