

STAGED CONSTRUCTION ANALYSIS OF REINFORCED CONCRETE BUILDINGS WITH DIFFERENT LATERAL LOAD RESISTING SYSTEMS

By

Mohamed Ibrahim Metwally Mohamed Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

STAGED CONSTRUCTION ANALYSIS OF REINFORCED CONCRETE BUILDINGS WITH DIFFERENT LATERAL LOAD RESISTING SYSTEMS

By

Mohamed Ibrahim Metwally Mohamed Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. **ADEL GALAL EL-ATTAR**

Adel El-Attan

Professor of Concrete Structures Structural Engineering Department Faculty of Engineering, Cairo University Dr. AHMED ALAA ELANSARY

Ahmed Alaz

Lecturer of Concrete Structures Structural Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2020

STAGED CONSTRUCTION ANALYSIS OF REINFORCED CONCRETE BUILDINGS WITH DIFFERENT LATERAL LOAD RESISTING SYSTEMS

By

Mohamed Ibrahim Metwally Mohamed Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in

STRUCTURAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Adel G. El-Attar,

Thesis Main Advisor

Professor of Concrete Structures, Cairo University.

Prof. Dr. Walid A. Attia,

Internal Examiner

Professor of Structural Analysis and Mechanics, Cairo University.

Prof. Dr. Hamed S. Askar.

External Examiner

Professor of Concrete Structures, Mansoura University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer's Name:** Mohamed Ibrahim Metwally Mohamed Ibrahim

Date of Birth: 27 / 9 / 1986 **Nationality:** Egyptian

E-mail: Mib.Metwally86@gmail.com

Phone: 01067975255

Address: El-Mansoura, Dakahlia, Egypt.

Registration Date: 01 / 10 / 2016 **Awarding Date:**/2020

Degree: Doctor of Philosophy **Department:** Structural Engineering

Supervisors:

Prof. Dr. Adel Galal El-Attar Dr. Ahmed Alaa Elansary

Examiners:

Prof. Dr. Adel Galal El-Attar (Thesis main advisor)

Prof. Dr. Walid Abdel Latif Attia (Internal examiner)

Prof. Dr. Hamed Shaker Hassan Askar (External examiner) (Professor of Concrete Structures, Mansoura University)

Title of Thesis:

"Staged Construction Analysis of Reinforced Concrete Buildings with Different Lateral Load Resisting Systems"

Key Words:

Tall Buildings; Lateral Load Resisting Systems; One Step Analysis; Staged-Construction Analysis; Shrinkage and Creep.

Summary:

Practitioners used to analyze Reinforced Concrete (RC) buildings using the One Step Analysis (OSA), where loads are applied to the whole structure as one unit. However, this assumption is not realistic because buildings are constructed storey by storey and dead load acts sequentially. This sequential nature of construction is considered in a more accurate approach which is called Staged-Construction Analysis (SCA). Current codes for RC structures are limited to OSA and they do not provide any provisions for SCA. In this research, a nonlinear Finite Element Model (FEM) for SCA of RC buildings is developed using the commercial software, MIDAS-Gen. The developed model accounts for time dependent effects such as shrinkage and creep. The model is utilized to analyze RC buildings with Rigid Frame (RF), Shear Wall (SW), Wall-Frame (WF) and Tube in Tube (TT) systems. Design parameters for the studied buildings are selected according to the current codes.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mohamed Ibrahim Metwally Mohamed Ibrahim	Date:/2020
Signature:	

Dedication

For my teacher *Prof. Dr. Salah El-Din E. El-Metwally*, who has encouraged me to complete my PhD in structural engineering department at Cairo university. He has not been only a teacher for me but father.

Acknowledgments

In the name of Allah, praise is to Allah, prayer and peace is upon the Messenger of Allah, the prophet Mohammed-peace is upon him-. Allah is the first and the last who, always guided and aided me to bring-forth for the achievement of this work. All praise and thanks are due to the Almighty Allah. There are many people whom I have to acknowledge for their support, help and encouragement during the journey of preparing this thesis. So, I will make an effort to give them their due here, and I sincerely apologize for any inattention.

First and foremost, I wish to express my thanks and gratitude to **my parents**, the ones who can never ever be thanked enough, for the overwhelming love and kindliness they bestow upon me, and who have supported me financially as well as morally and without whose proper guidance it would have been out of the question for me to complete my higher education.

I would like to record my deepest gratitude to **Prof. Dr. Adel El-attar** who, very kindly, and generously, devoted much of his time and experience in helping, guiding, and advising me. Indeed, this work is the outcome of his great continuous efforts and wide experience in the field of structural engineering.

Also, I am especially grateful and especially indebted to **Dr. Ahmed Elansary** for his constructive keen supervision, fruitful criticism, continuous support and encouragement to complete this work, above all and the most needed, he provided me unflinching encouragement and support in various ways. I am really indebted to him more than he knows and O Allah give him much better.

My special, profound and affectionate thanks, love, affectionate gratitude are due to my wife, **Dr. Sara Abd-Elkhalek**, who has been struggling with me, hand by hand, to secure and shape a brighter future. Her harmony, support and looking after my children during my study all stand behind my success. At the same time, I would like to express my love to 'the beats of my heart,' my children, **Khadija** and **Ā'ishah**, who is the only source of revelation to me, and their love and pure smiles that have made the hardship of this task possible. *My deep love and thanks are due to my sister, brothers and the entire family*.

I do not forget to express my deep sense of gratitude to **Prof. Dr. Adel Dif, Prof. Dr. Kasem El-Alfy, Prof. Dr. Mohamed E. El-Zoughiby, Prof. Dr. Shaaban Selim, Prof. Dr. Ahmed Elgamal** and all my faithful teachers and friends in *Mansoura College Higher Institute of Engineering & Technology* for their encouragement and support.

I am also, immensely thankful for the sincere, lovely and brotherly friends in my country who accompanied me and shared suffering with me during my study especially Acc. Antr R. El-Meshad, Eng. Ahmed Kadry, Eng. Mohamed S. Abo-Elnaga, and Eng. Mohamed E. Farahat. They are not only friends but brothers.

Finally, O Allah make this work purely for you alone, O Lord of the Worlds.

Mohamed Ibrahim Metwally, 2020

Table of Contents

DIS	CLAIM	IER	I
DED	ICATI	ON	II
ACI	KNOWI	LEDGMENTS	TTT
LIST	I OF T	ABLES	VII
LIST	r of f	IGURES	VIII
LIST	r of s	YMBOLS, ABBREVIATIONS AND NOMENCLATURE	X
CHA	APTER	1: INTRODUCTION AND LITERATURE REVIEW	1
	1.1.	General	1
	1.2.	Motivation	1
	1.3.	Literature Review	
	1.3.1		
	1.3.2	<i>5</i> ,	
	1.3.3		
	1.3.4	. Column shortening and differential shortening	5
	1.3.5	. Time dependent materials effect	6
	1.3.6	. Column shortening mitigating techniques	6
	1.3.7	. Optimum Locations of Outrigger System	8
	1.4.	Thesis Objectives	9
	1.5.	Thesis Scope	10
	1.5.1	. Chapter 2: Staged-Construction and One-Step Analyses of Reinfor	ced
	Conc	crete Buildings	10
	1.5.2	. Chapter 3: Optimum Lateral Load Resisting System for Reinforced Cor	ncrete
	Build	lings using Staged-Construction Analysis	
	1.5.3		_
		C Buildings with Different Lateral Load Resisting Systems	10
	1.5.4	1 1	
	Build	lings with Tube in Tube System using Staged-Construction Analysis	11
		2: S STAGED-CONSTRUCTION AND ONE-STEP ANALY	
OF I	REINF	ORCED CONCRETE BUILDINGS	12
	2.1.	Introduction	12
	2.2.	Basic assumptions	15
	2.3.	Finite element model (FEM)	20
	2.4.	Finite element model validation	
	2.5.	Staged-construction analysis in midas Gen	25
	2.6.	Effect of SCA on straining actions in beams and slabs	

	2.7.	Results	30
	2.7.1	. Shortening in vertical members	32
		2.7.1.1. Shortening from SCAN and SCAT	32
		2.7.1.2. Shortening from OSA and SCAT	35
	2.7	.2. Differential Displacement in vertical members	
	2.7	.3. Bending moment in beams and slabs	
	2.7	4. Shearing force in beams	45
CH	APTER	3: OPTIMUM LATERAL LOAD RESISTING SYS	STEM FOR
RE	INFOR	CED CONCRETE BUILDINGS USING	STAGED-
CO	NSTRU	CTION ANALYSIS	47
	3.1.	Introduction	47
	3.2.	Basic assumptions	
	3.3.	Finite element modelling	51
	3.4.	Change in straining actions due to SCA	
	3.5.	Results	
	3.5	.1. Differential displacement in vertical members	55
	3.5	.2. Bending moment in beams and slabs	57
	3.5	.3. Shearing force in beams	62
	3.5	4. Optimum LLRS	65
СН	APTER	4: ASSESSMENT OF MITIGATION ALTERNAT	TIVES FOR
		NTIAL SHORTENING IN RC BUILDINGS WITH D	
		LOAD RESISTING SYSTEMS	
	4.1.	Introduction	
	4.2.		67
	4.3.		
	4.5.	Column shortening mitigating techniques	69
	11	Column shortening mitigating techniques	69 70
	4.4. 4.5	Column shortening mitigating techniques Basic assumptions Finite element model (FEM)	69 70 71
	4.5.	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF)	69 70 71
	4.5. 4.6.	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF) Location of outrigger system	69 71 72 73
	4.5. 4.6. 4.7.	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF) Location of outrigger system Results	69 71 72 73
	4.5. 4.6. 4.7.	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF) Location of outrigger system Results 1. Mitigation Alternative 1	69 71 72 73 74
	4.5. 4.6. 4.7.	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF) Location of outrigger system Results 1. Mitigation Alternative 1 4.7.1.1. Differential displacement in vertical members	69 70 72 73 74 75
	4.5. 4.6. 4.7.	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF) Location of outrigger system Results 1. Mitigation Alternative 1 4.7.1.1. Differential displacement in vertical members 4.7.1.2. Bending moment in beams and slabs	
	4.5. 4.6. 4.7. 4.7	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF) Location of outrigger system Results 1. Mitigation Alternative 1 4.7.1.1. Differential displacement in vertical members 4.7.1.2. Bending moment in beams and slabs 4.7.1.3. Shearing force in beams	69 70 72 73 74 75 75 75
	4.5. 4.6. 4.7. 4.7	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF) Location of outrigger system Results 1. Mitigation Alternative 1 4.7.1.1. Differential displacement in vertical members 4.7.1.2. Bending moment in beams and slabs 4.7.1.3. Shearing force in beams 2. Mitigation Alternative 2	
	4.5. 4.6. 4.7. 4.7	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF) Location of outrigger system Results 1. Mitigation Alternative 1 4.7.1.1. Differential displacement in vertical members 4.7.1.2. Bending moment in beams and slabs 4.7.1.3. Shearing force in beams 2. Mitigation Alternative 2 4.7.2.1. Differential displacement in vertical members	
	4.5. 4.6. 4.7. 4.7	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF) Location of outrigger system Results 1. Mitigation Alternative 1 4.7.1.1. Differential displacement in vertical members 4.7.1.2. Bending moment in beams and slabs 4.7.1.3. Shearing force in beams 2. Mitigation Alternative 2 4.7.2.1. Differential displacement in vertical members	
	4.5. 4.6. 4.7. 4.7	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF) Location of outrigger system Results 1. Mitigation Alternative 1 4.7.1.1. Differential displacement in vertical members 4.7.1.2. Bending moment in beams and slabs 4.7.1.3. Shearing force in beams 2. Mitigation Alternative 2 4.7.2.1. Differential displacement in vertical members 4.7.2.2. Bending moment in beams and slabs	
	4.5. 4.6. 4.7. 4.7	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF) Location of outrigger system Results 1. Mitigation Alternative 1 4.7.1.1. Differential displacement in vertical members 4.7.1.2. Bending moment in beams and slabs 4.7.1.3. Shearing force in beams 2. Mitigation Alternative 2 4.7.2.1. Differential displacement in vertical members 4.7.2.2. Bending moment in beams and slabs 4.7.2.3. Shearing force in beams	
	4.5. 4.6. 4.7. 4.7	Column shortening mitigating techniques Basic assumptions Finite element model (FEM) Dimension modification factor (DMF) Location of outrigger system Results 1. Mitigation Alternative 1 4.7.1.1. Differential displacement in vertical members 4.7.1.2. Bending moment in beams and slabs 4.7.1.3. Shearing force in beams 2. Mitigation Alternative 2 4.7.2.1. Differential displacement in vertical members 4.7.2.2. Bending moment in beams and slabs 4.7.2.3. Shearing force in beams 3. Mitigation Alternative 3	

CHA	APTER	5: OPTIMUM LOCATION OF OUTRIGGERS IN REINFO	ORCED
CON	NCRET	E BUILDINGS WITH TUBE IN TUBE SYSTEM	USING
STA	GED-C	CONSTRUCTION ANALYSIS	99
	5.1.	Introduction	99
	5.2.	Optimum locations of outrigger system	100
	5.3.	Basic assumptions	
	5.4.	Finite element modelling	102
	5.5.	Outrigger system configurations	102
	5.6.	Results	
	5.6.1.	Differential Displacement in vertical members	105
	5.6.2.	Bending moment in slabs	109
CHA	APTER	6: DISCUSSION AND CONCLUSIONS	114
	6.1.	General	114
	6.2.	Conclusions	114
	6.3.	Recommendations for future research	117
REF	EREN	CES	118
APP	ENDIX	A: CROSS-SECTIONS OF ELEMENTS IN ALL BUILDIN	NGS.124
	Append	lix A1. Buildings with Rigid Frame System	124
	Append	dix A2. Buildings with Shear Wall System	125
	Append	dix A3. Buildings with Wall Frame System	126
	Append	dix A4. Buildings with Tube in Tube System	128

List of Tables

Table 2.1: Details of the studied buildings
Table 2.2: Number of elements and number of degrees of freedom for the studied
buildings23
Table 2.3: Details of installing and removing of formwork in SCA27
Table 3.1: Details of the studied buildings50
Table 3.2: Number of elements and number of degrees of freedom for the studied
buildings for both analyses52
Table 3.3: Maximum DD from OSA and SCAT65
Table 3.4: Maximum difference percentage between BMs in beams and slab strips from
OSA and SCAT66
Table 3.5: Maximum difference percentage between SFs in beams from OSA and
SCAT66
Table 4.1: Details of the studied buildings
Table 4.2: Maximum DD from SCATb and SCATa78
Table 4.3: Maximum difference percentages between bending moments obtained from
OSA and SCAT before and after mitigation82
Table 4.4: Maximum difference percentages between shearing force obtained from
OSA and SCAT before and after mitigation84
Table 4.5: Dimension factor, DMF at each floor of studied buildings84
Table 4.6: Maximum DD from SCATb and SCATa87
Table 4.7: Maximum difference percentages between bending moments obtained from
OSA and SCAT before applying Mitigation Alternative 291
Table 4.8: Maximum difference percentages between shearing force obtained from
OSA and SCAT before applying Mitigation Alternative 293
Table 4.9: Maximum DD from SCATb and SCATa95
Table 4.10: Maximum difference percentages between bending moments obtained from
OSA and SCAT before and after mitigation
Table 4.11: Maximum difference percentages between shearing force obtained from
OSA and SCAT before and after mitigation98
Table 5.1: Proposed outrigger system configurations
Table 5.2: Maximum DD from SCATa
Table 5.3: Maximum difference percentages between bending moments obtained from
OSA and SCAT after using outrigger(s)

List of Figures

Figure 2.1: Three-dimensional view of the studied RC Buildings	10
Figure 2.2: Adopted LLRS in the studied buildings. (a) Rigid Frame (b) Shear Wall	
Wall Frame (d) Tube in Tube	
Figure 2.3: Plan view of the studied buildings [12]	
Figure 2.4: Beam element with 12 degrees of freedom [58]	
Figure 2.5: Plate element with 24 degrees of freedom [58]	
Figure 2.6: Stress-strain relationship for reinforcing steel [58,59]	
Figure 2.7: Concrete fiber constitutive model [58]	
Figure 2.8. Change in deformations with time due to elastic/inelastic strains [58]	
Figure 2.9: Studied buildings response using El-leithy et al. [12] and proposed FEM.	
Storey drift (b) structural period (c) base shear force	
Figure 2.11: Construction schodule adopted for SCA	
Figure 2.11: Construction schedule adopted for SCA	
Figure 2.12: Damaged element due to column differential shortenings; (a) facades (b	
finishes (c) claddings (d) mechanical components (e) plumbing components (f)	
masonry walls	29
Figure 2.13: Effect of differential displacements on straining actions in horizontal	20
members.	
Figure 2.14: One quarter of plans for studied building; (a) B_{d1} and B_{d3} (b) B_{d2} and B_{d3}	
(c) B_{d5} and B_{d6} (d) B_{d7} and B_{d8}	
Figure 2.15: Shortening in concrete members due to SCAN and SCAT: (a) B _{d1} (b) B	
(c) B_{d3} (d) B_{d4} (e) B_{d5} (f) B_{d6} (g) B_{d7} (h) B_{d8}	
Figure 2.16: Shortening in concrete members due to OSA and SCAT: (a) B _{d1} (b) B _{d2}	
$B_{d3}\left(d\right)B_{d4}\left(e\right)B_{d5}\left(f\right)B_{d6}\left(g\right)B_{d7}\left(h\right)B_{d8}$	38
Figure 2.17: Differential displacement in concrete members due to OSA and SCAT:	(a)
B_{d1} (b) B_{d2} (c) B_{d3} (d) B_{d4} (e) B_{d5} (f) B_{d6} (g) B_{d7} (h) B_{d8}	41
Figure 2.18: Difference percentage in bending moment for beam and slab between C)SA
and SCAT: (a) B_{d1} (b) B_{d2} (c) B_{d3} (d) B_{d4} (e) B_{d5} (f) B_{d6} (g) B_{d7} (h) B_{d8}	44
Figure 2.19: Difference percentage in shearing force at beam end zones between OS.	A
and SCAT: (a) B _{d1} (b) B _{d3} (c) B _{d5} (d) B _{d6}	46
Figure 3.1: Three dimensional view of studied buildings. (a) B_{d1} (b) B_{d2} (c) B_{d3} (d) E_{d3}	3 _{d4}
(e) B_{d5} (f) B_{d6}	51
Figure 3.2: Results of sensitivity analysis for buildings B_{d1} and B_{d5} (a) storey drift (b)
structural period	52
Figure 3.3: Damaged element due to column differential shortenings (CDS); (a)	
concrete floor (b) beam (c) brick wall (d) curtain wall	54
Figure 3.4: Differential displacement in concrete vertical members due to OSA and	
SCAT: (a) B _{d1} (b) B _{d2} (c) B _{d3} (d) B _{d4} (e) B _{d5} (f) B _{d6}	57
Figure 3.5: Difference in bending moment for beam B1 and slab S1 between OSA ar	
SCAT: (a) B _{d1} (b) B _{d2} (c) B _{d3} (d) B _{d4} (e) B _{d5} (f) B _{d6}	59

Figure 3.6: Difference in bending moment for beam B2 and slab S2 between OSA and
SCAT: (a) B _{d1} (b) B _{d2} (c) B _{d3} (d) B _{d4} (e) B _{d5} (f) B _{d6} 61
Figure 3.7: Difference percentage in shearing force at beam B1 ends between OSA and
SCAT: (a) B_{d1} (b) B_{d3} (c) B_{d4} (d) B_{d6}
Figure 3.8: Difference percentage in shearing force at beam B2 ends between OSA and
SCAT: (a) B _{d1} (b) B _{d3} (c) B _{d4} (d) B _{d6} 64
Figure 4.1: Location of outrigger system along building height; (a) buildings Bd ₅ and
Bd ₆ (b) buildings Bd ₇ and Bd ₈ 73
Figure 4.2: Outrigger system utilized in the investigated buildings; (a) plan view (b) 3D
view of the system74
Figure 4.3: Differential displacement in vertical members due to SCATb and SCATa;
(a) B_{d1} (b) B_{d2} (c) B_{d3} (d) B_{d4} (e) B_{d5} (f) B_{d6} (g) B_{d7} (h) B_{d8}
Figure 4.4: Difference percentage in bending moment for beam and slab between OSA
and SCAT before and after mitigation; (a) B_{d1} (b) B_{d2} (c) B_{d3} (d) B_{d4} (e) B_{d5} (f)
$B_{d6}(g) B_{d7}(h) B_{d8}$
Figure 4.5: Difference percentage in shearing force at beam end zones between OSA
and SCAT; (a) B _{d1} (b) B _{d3} (c) B _{d5} (d) B _{d6} 83
Figure 4.6: Differential displacement in concrete members due to SCATa and SCATa;
(a) Bd_1 (b) Bd_2 (c) Bd_3 (d) Bd_4 (e) Bd_5 (f) Bd_6 (g) Bd_7 (h) Bd_8
Figure 4.7: Difference percentage in bending moment for beam and slab between OSA
and SCAT; (a) Bd ₁ (b) Bd ₂ (c) Bd ₃ (d) Bd ₄ (e) Bd ₅ (f) Bd ₆ (g) Bd ₇ (h) Bd890
Figure 4.8: Difference percentage in shearing force at beam end zones between OSA
and SCAT; (a) Bd ₁ (b) Bd ₃ (c) Bd ₅ (d) Bd ₆ 92
Figure 4.9: Differential displacement in concrete members due to SCATb and SCATa;
(a) Bd5 (b) Bd6 (c) Bd7 (d) Bd894
Figure 4.10: Difference percentage in bending moment for slab strip/ beam between
SCATb and SCATa; (a) Bd ₅ (b) Bd ₆ (c) Bd ₇ (d) Bd ₈
Figure 4.11 Difference percentage in bending moment for beams between SCATb and
SCATa; (a) Bd ₅ (b) Bd ₆ 98
Figure 5.1: Outrigger system configurations; (a) Conf. 1 (b) Conf. 2 (c) Conf. 3 (d)
Conf. 4 (e) Conf. 5
Figure 5.2: Differential displacement in concrete members due to SCATb and SCATa;
(a) Conf. 1 in Bd ₁ (b) Conf. 2 in Bd ₁ (c) Conf. 3 in Bd ₁ (d) Conf. 4 in Bd ₁ (e)
$Conf.\ 5\ in\ Bd_1\ (f)\ Conf.\ 1\ in\ Bd_2\ (g)\ Conf.\ 2\ in\ Bd_2\ (h)\ Conf.\ 3\ in\ Bd_2\ (i)\ Conf.\ 4$
in Bd ₂ (j) Conf. 5 in Bd ₂
Figure 5.3: Difference percentage in bending moment for slab strip S2 between SCATb
and SCATa; (a) Conf. 1 in Bd ₁ (b) Conf. 2 in Bd ₁ (c) Conf. 3 in Bd ₁ (d) Conf. 4
in Bd ₁ (e) Conf. 5 in Bd ₁ (f) Conf. 1 in Bd ₂ (g) Conf. 2 in Bd ₂ (h) Conf. 3 in Bd ₂
(i) Conf. 4 in Bd ₂ (j) Conf. 5 in Bd ₂ 112

List of Symbols, Abbreviations and Nomenclature

ACI American concrete institute

ASCE American society of civil engineers

Beam

B.M.D Bending moment diagram

 B_d Building

BDD Beam differential displacements

BM Bending moments

BT Bundled tube

C Column

CDS Column differential shortenings

CEB-FIP International federation for structural concrete, Comité Européen du Béton-Fédération internationale du béton

Conc. Cast. Concrete Casting

Configuration

DAS Differential axial shortening

DD Differential displacement

Diff. % Difference in percentage between staged-construction analysis and

one-step analysis

Diff.a Difference between staged-construction analysis and one-step analysis

after mitigation

Difference between staged-construction analysis and one-step analysis

before mitigation

DMF Dimension modification factor

D_N New dimensions

D_O Old dimensions

E_c Modulus of elasticity of concrete

E_s modulus of elasticity of steel

ECP Egyptian Code of Practice

ETABS Extended three dimensional analysis of building structures

F Floor

f'c Characteristic strength of concrete

FEM Finite element model

Formwork Inst. Formwork insulation

f_u Ultimate stress of steel

f_y Yield stress of steel

GA Genetic algorithm

HRB High-rise buildings

LLRS Lateral load resisting systems

LRB Low rise buildings

 M_{Δ} Bending moment due to differential displacement

midas Gen. midas Generation

 M_{OSA} Bending moment due to one-step analysis

MPA Mineral products association

 M_{SCA} Bending moment due to Staged-construction analysis

OSA One-step analysis

OT One tube

RC Reinforced concrete

RF Rigid frame

S Slab strip

S.F.D Shear force diagram

SCA Staged-construction analysis

SCAN Staged-construction analysis neglecting time dependent effects

SCAT Staged-construction analysis including time dependent effects