

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

MODELING OF ENGINEERING FACTORS FOR SPRINKLER IRRIGATION SYSTEM DESIGN IN THE NEWLY RECLAIMED SOIL

BY

MOHAMED GABER MOHAMED ALASHRAM

B.Sc. Agric. Sc. (Agricultural Engineering), Fac. Agric., Menoufia University, 2011M.Sc. Agric. Sc. (Irrigation and Drainage Engineering), Fac. Agric., Ain Shams Univ., 2016

A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences (On Farm Irrigation and Drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

MODELING OF ENGINEERING FACTORS FOR SPRINKLER IRRIGATION SYSTEM DESIGN IN THE NEWLY RECLAIMED SOIL

BY

MOHAMED GABER MOHAMED ALASHRAM

B.Sc. Agric. Sc. (Agricultural Engineering), Fac. Agric., Menoufia University, 2011M.Sc. Agric. Sc. (Irrigation and Drainage Engineering), Fac. Agric., Ain Shams Univ., 2016

s thesis for Ph.D. Degree has been approved by:
Asaad AbdElKader Derbala
Prof. of Agricultural Engineering, Faculty of Agriculture, Tanta
University.
Yasser Ezzat Arafa
Prof. of Agricultural Engineering, Faculty of Agriculture, Ain
Shams University.
Khaled Faran El-Bagoury
Prof. of Agricultural Engineering, Faculty of Agriculture, Ain
Shams University.
Ahmed Abo El- Hassan Abdel - Aziz
Prof. of Agricultural Engineering, Faculty of Agriculture, Ain
Shams University.

Date of examination: 10 / 4 / 2021

MODELING OF ENGINEERING FACTORS FOR SPRINKLER IRRIGATION SYSTEM DESIGN IN THE NEWLY RECLAIMED SOIL

BY

MOHAMED GABER MOHAMED ALASHRAM

B.Sc. Agric. Sc. (Agricultural Engineering), Fac. Agric., Menoufia University, 2011M.Sc. Agric. Sc. (Irrigation and Drainage Engineering), Fac. Agric., Ain Shams Univ., 2016

Under Supervision of:

Dr. Ahmed Abo El- Hassan Abdel - Aziz

Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Khaled Faran El-Bagoury

Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Said Mohamed Shaaban

Research Prof. of Soil Physics, Department of Water Relations and Field Irrigation, National Research Centre.

ABSTRACT

Mohamed Gaber Mohamed Ahmed Alashram: Modeling of Engineering Factors for Sprinkler Irrigation System Design in the Newly Reclaimed Soil. Unpublished Ph.D. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2021.

An expert system with all the design criteria could help decision maker, non-technical, inexperienced irrigation system installers and farmers. Therefore, this study was done with the objective of building, verifying and validating of an expert system model to benefit decision makers in designing solid-set sprinkler irrigation system. A rule-based program named EFSIS-ES (Engineering Factors of Sprinkler Irrigation System -Expert System) had been built, verified and validated. The inputs data included location data, climate data, pump data, crop data, soil data and technical data. The outputs of the expert system model were number of the sprinklers on a lateral, number of laterals in the irrigation system, length of each lateral, main line length, irrigation interval, required pump power, total dynamic head "TDH" and pump discharge output. Results indicated a high correlation ($R^2 = 0.999$) between EFSIS-ES model and the designed spreadsheet in regard to required pump power for verification process. The regression coefficient (R²) was 0.998 between EFSIS-ES model and SSSDPS Expert regarding total dynamic head "TDH". High correlation ($R^2 = 0.998$) was detected between EFSIS-ES model and SSSDPS Expert regarding pump discharge output for validation process. It is clear that the value of total dynamic head "TDH" calculated by EFSIS-ES model (24.67 m) was close with that obtained by the SSSDPS Expert (24.64 m). Also pump discharge output calculated by EFSIS-ES model (19.44 m³/hr) had the same trend comparing with that gained by the SSSDPS Expert (19.20 m³/hr). A

comparison was made between data calculated using EFSIS-ES model against the existed sprinkler irrigation system in the study region at El Nubaria for validation process. Results concluded that there are no significant differences between the field test data and EFSIS-ES model outputs.

Keywords:

Expert system, EFSIS-ES model, solid-set sprinkler irrigation, required pump power, total dynamic head "TDH", and pump discharge output.

ACKNOWLEDGEMENT

I would wish to express my special appreciation and sincere gratitude to **Dr. Ahmed Abo El- Hassan Abdel – Aziz**, Prof. of Agricultural Engineering, Ain Shams University and **Dr. Khaled Faran Elbagoury**, Prof. of Agricultural Engineering, Ain Shams University, for supervision, supporting research, continuous scientific help, valuable suggestions, revising the thesis and recommendation.

I would wish to express my deep appreciation and sincere gratitude to **Dr. Said Mohamed Shaaban**, Res. Prof. of Soil Physics, Water Relations and Field Irrigation Dept., National Research Centre and **Dr. Hany Mohamed Mehanna**, Ass. Res. Prof. of Agricultural Engineering, National Research Centre, for supervision, continuous support, preparation of this work, advice, providing me with all required facilities and revising the manuscript.

Great thanks to all staff members of Agric. Eng. Dept., Fac. of Agric., Ain Shams Univ. and also Water Relations and Field Irrigation Dept., National Research Centre, for their kindness help.

Thanks are extended to the authorities of the **National Research Centre**, for financial support and facilities introduced to achieve this work.

Great thanks to **father, mother, wife, brothers, daughter** and all members of my family and friends for support and attention during my whole study.

Thanks to all who had lent me a hand to complete this research work.

CONTENTS

		Page
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	3
2.1	Modeling and expert system	3
2.2	Expert system	3
2.3	The use of expert systems technology	4
2.4	The structure of the expert system	7
2.5	Verification, validation processes and programming	
	languages for expert system	9
2.6	Sprinkler irrigation system	11
2.7	Engineering factors for sprinkler irrigation system	13
2.7.1	Pressure	13
2.7.2	Spacing between sprinklers	18
2.7.3	Sprinkler type	21
3	MATERIALS AND METHODS	24
3.1	Building up of the EFSIS-ES model	24
3.1.1	User interface	24
3.1.2	Expert system model development	24
3.1.3	Structure of EFSIS-ES model	26
3.2	Data input to the expert system model	27
3.3	Description of the EFSIS-ES model	27
3.3.1	The opening screen	27
3.3.2	Inputs screen	28
3.3.3	Location screen	29
3.3.4	Climate screen	29
3.3.5	Pump screen	30
3.3.6	Crop screen	30
3.3.7	Soil screen	31
3.3.8	Technical data screen	31

3.3.9	Outputs screen	31
3.4	Verification of the EFSIS-ES model	33
3.5	Validation of the EFSIS-ES model	33
3.5.1	Experimental site description	33
3.5.2	Some soil properties	33
3.5.3	Irrigation system description	34
3.5.4	Measuring instrument	38
3.6	The formulae used in building up the model	38
3.7	The experimental design	44
IV	RESULTS AND DISCUSSION	46
4.1	Operating the expert system model	46
4.2	Verification of the expert system model	48
4.3	A comparison between EFSIS-ES against spreadsheet	
	regarding the study factors	52
4.3.1	Sprinkler operating pressure	52
4.3.2	Spacing between sprinklers	55
4.3.3	Sprinkler type	55
4.4	Validation of the expert system model	61
4.5	The field test for EFSIS-ES model	65
V	SUMMARY AND CONCLUSIONS	68
VI	REFERENCES	72
VII	APPENDICES	83
-	ARABIC SUMMARY	-

LIST OF APPENDICES

		Page
Appendix 1:	The EFSIS-ES model code (VB.Net 2015 language)	82
Appendix 1.1:	The opening screen	82
Appendix 1.2:	Inputs screen	82
Appendix 1.3:	Location data screen	84
Appendix 1.4:	Climate data screen	88
Appendix 1.5:	Pump data screen	91
Appendix 1.6:	Crop data screen	93
Appendix 1.7:	Soil data screen	97
Appendix 1.8:	Technical data screen	101
Appendix 1.9:	Outputs screen	110

LIST OF TABLES

		Page
Table 1:	Soil physical properties	34
Table 2:	Inputs data for the comparison between EFSIS-ES	
	model and SSSDPS Expert	62
Table 3:	Comparison of EFSIS-ES model and field test data	66

LIST OF FIGURES

		Page
Fig. 1:	Components of an expert system	8
Fig. 2:	The EFSIS-ES model flowchart	25
Fig. 3:	Functions and rules of required pump power in EFSIS-ES	27
Fig. 4:	The layout of solid-set sprinkler irrigation system network	35
Fig. 5:	The experimental layout	45
Fig. 6:	Correlation analysis of number of sprinklers in a lateral	
	using EFSIS-ES model against the personally designed	
	spreadsheet	49
Fig. 7:	Correlation analysis of number of laterals in the irrigation	
	system using EFSIS-ES model against the personally	
	designed spreadsheet	49
Fig. 8:	Correlation analysis of irrigation interval (day) using	
	EFSIS-ES model against the personally designed	
	spreadsheet	50
Fig. 9:	Correlation analysis of required pump power (hp) using	
	EFSIS-ES model against the personally designed	
	spreadsheet	51
Fig. 10:	Correlation analysis of total dynamic head (TDH) (m)	
	using EFSIS-ES model against the personally designed	
	spreadsheet	51
Fig. 11:	Correlation analysis of pump discharge output (m³/hr)	
	using EFSIS-ES model against the personally designed	
	spreadsheet	52
Fig. 12:	A comparison of required pump power (hp) using EFSIS-	
	ES against spreadsheet under three sprinkler pressures for	
	three spacing between sprinklers using sprinkler type (S1)	53
Fig. 13:	A comparison of required pump power (hp) using EFSIS-	
	ES against spreadsheet under three sprinkler pressures for	
	three spacing between sprinklers using sprinkler type (S2)	54

Fig. 14:	A comparison of total dynamic head "TDH" (m) using	
	EFSIS-ES against spreadsheet for three spacing between	
	sprinklers under three sprinkler pressures using sprinkler	
	type (S1)	56
Fig. 15:	A comparison of total dynamic head "TDH" (m) using	
	EFSIS-ES against spreadsheet for three spacing between	
	sprinklers under three sprinkler pressures using sprinkler	
	type (S2)	57
Fig. 16:	A comparison of pump discharge output (m ³ /hr) using the	
	EFSIS-ES against spreadsheet for two sprinkler types	
	under three sprinkler pressures using spacing between	
	sprinklers (10m x 10m)	58
Fig. 17:	A comparison of pump discharge output (m ³ /hr) using the	
	EFSIS-ES against spreadsheet for two sprinkler types	
	under three sprinkler pressures using spacing between	
	sprinklers (12m x 12m)	59
Fig. 18:	A comparison of pump discharge output (m³/hr) using the	
	EFSIS-ES against spreadsheet for two sprinkler types	
	under three sprinkler pressures using spacing between	
	sprinklers (15m x 15m)	60
Fig. 19:	Outputs generated by using EFSIS-ES model	63
Fig. 20:	Outputs generated by using SSSDPS Expert	63
Fig. 21:	The regression analysis between EFSIS-ES model and	
	SSSDPS Expert regarding total dynamic head (TDH) (m)	64
Fig. 22:	The regression analysis between EFSIS-ES model and	
	SSSDPS Expert regarding pump discharge output (m ³ /hr)	64