

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Computer and Systems Engineering Department

Photonic Secure Quantum Communication

A Thesis

Submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Electrical Engineering

Submitted by

Hossam Mohamed Abdel Rahman AbdEllah

M.Sc of Electrical Engineering
(Electronics and Communications Engineering)
Ain Shams University, 2011

Supervised By

Prof. Ayman Mohamed Bahaa-Eldin

Computer and Systems Engineering Dept., Ain Shams University

Prof. Khaled Abdel Wahab Kirah

Engineering Physics and Mathematics Dept., Ain Shams University **Dr. Mohamed Aly Aly Sobh**

Computer and Systems Engineering Dept., Ain Shams University

Cairo, 2021

Examiners' Committee

Name:	Hossam Mohamed Abdel Rahman AbdEllah			
Thesis:	Photonic Secure Quantum Communication			
Degree:	Doctor of Philosophy in Electrical Engineering			
Title, Nam	e and Affiliation	Signature		
Misr Interr Faculty of	ed Hussein Mostafa national University, Computer science, Science Dept.			
Ain Shams Faculty of I	Mohamed Kamal Mahdi University, Engineering, and Systems Engineering Dept.			
Ain Shams Faculty of I	an Mohamed Bahaa-Eldin University, Engineering, and Systems Engineering Dept.			
Ain Shams Faculty of I	ed Abdel Wahab Kirah University, Engineering, g Physics and Mathematics Dept.			
Date:				

STATEMENT

This dissertation is submitted to Ain Shams University

for the degree of Doctor of Philosophy in Electrical

Engineering (Computer and Systems Engineering).

The work included in this thesis was carried out by the

author at the Computer and Systems Engineering

Department, Faculty of Engineering, Ain **Shams**

University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a

qualification at any other university or institution.

Name: Hossam Mohamed Abdel Rahman AbdEllah

Signature:

Date:

iii

Curriculum Vitae

Hossam Mohamed Abdel Rahman

Name of Researcher

AbdEllah

Date of Birth 29/11/1986

Place of Birth Egypt

First University Degree B.Sc. in Electrical Engineering

Name of University Ain Shams University

Date of Degree June 2008

Second University Degree M.Sc. in Electrical Engineering

Name of University Ain Shams University

Date of Degree April 2011

ACKNOWLEDGEMENT

I would like first to thank my supervisors Prof. Dr. Ayman Mohamed Bahaa-Eldin, Prof. Dr. Khaled Abdel Wahab Kirah and Dr. Mohamed Sobh for their continuous guidance, encouragement, help and patience. I learned so many valuable things from them, but above all, they taught me how to be devoted to research and how to help others.

Prof. Dr. Khaled Abdel Wahab Kirah was always guiding me step by step through the whole thesis work. He provided me with great help during all phases of this thesis.

Last but not least, I would like to thank my parents. Their patience, care, and love are what guided me through my whole life. I pray to God that I will always be a good faithful son to them.

ABSTRACT

Quantum Cryptography has been playing an important role in communications after the reveal of vulnerabilities of classical channels. The main aim of encryption is to guarantee the security of the messages among communicators, without reducing the efficiency of communication channel. The most popular idea was quantum key distribution which unfortunately leads to the loss of lots of qubits since many of them have to be discarded. In 2002, Quantum secure direct communication QSDC was launched based on transmitting directly the secret messages without first establishing a key to encrypt them. It does not require any additional classical information in communications.

While most of the researches on channel security have focused on point to point communication, little attention was given to multi nodes networks. In this study, the possibilities of loopholes in multi-sites networks using quantum secure direct communication encryption protocols are analyzed. Several solutions are proposed. Depending on the installed topology (linear, ring, star and partially meshed) and on the distance between the nodes, a different solution is proposed.

In this study as well, a complete modeling and simulation has been done for a QSDC communication system using quantum photonic simulator and compared to experimental results. Security enhancements has been done by introducing decoy state function to the system and dispersive compensation techniques to drive the system to match practical fiber lengths which are required in commercial systems.

Key words: Quantum Cryptography; Quantum Secure Direct Communication; QSDC; multisite network; Entangled single photon pair; Two step entanglement based protocol; Frequency coding scheme; Single photon source; Decoy State protocol; Lumerical;

SUMMARY

This dissertation demonstrates the importance of quantum encryption for unconditioned secure communication. The dissertation consists of four chapters organized as follows:

Chapter One: The chapter begins with an introduction on the history of data transfer, data security and the history of cryptography. In addition, the problems of classical encryption have been discussed and the way to defeat them using quantum cryptography.

Chapter Two: In this chapter, physics and concepts behind quantum cryptography and the different protocols that have been proposed to serve this idea. Limitations of the quantum techniques have been showed. the mathematical descriptions of those phenomena and techniques have been studied as well.

Chapter Three: In this chapter, new ideas have been proposed to generalize the quantum encryption techniques, to be able for deployment over practical multi-site networks, rather than working only over point to point case study as in literature.

Chapter Four: complete modeling and simulation for the QSDC system have been done successfully. Proposing decoy state technique as an enhancement to the conventional systems, comparison has been done between the results of the proposed system and the conventional one from security point of view and system performance (information capacity).

Chapter Five: In this chapter Conclusions are drawn and future work based on this work is suggested.

List of CONTENTS

Chapter 1: Introduction	. 01
1.1 Research Plan.	03
1.2 Research hypothesis and Concepts	04
1.3 Research Goals.	04
1.4 Thesis Organization.	. 04
Chapter 2: Cryptography in Literature	06
2.1 Classical Cryptography	06
2.2 Modern Cryptography	06
2.3 Quantum Cryptography.	08
2.3.1 The Qubit.	09
2.3.2 Wave–particle duality	. 10
2.3.3 Entanglement	12
2.3.3.1 Generating entangled photon pair using MZI	15
2.3.3.2 Entanglement - Mathematical Description	17
2.3.3.3 Entanglement Generation From Pure States	18
2.3.3.4 Entanglement and Violation of Bell's Inequality	. 19
2.3.3.5 Applying Entanglement on Photons	. 21
2.3.4 Non Cloning Theorem.	24
2.3.5 Quantum key distribution(QKD)	25
2.3.6 Deterministic Secure Quantum Communication (DSQC)	27
2.3.7 Quantum Secure Direct Communication (QSDC)	27
2.3.8 Limitations in QSDC	31
2.3.8.1 Noiseless channel.	31
2.3.8.2 Noisy Channel.	32
2.3.8.3 Trojan Horse Attacks	33
2.3.9 Approaches to overcome OSDC's limitations	33

2.3.9.1 Hyper-Entanglement	33
2.3.9.2 Two-step QSDC scheme	. 34
2.3.9.3 Decoy-photon technique	. 35
2.3.9.4 Frequency coding Single Photon Scheme	. 39
2.3.9.5 Shor error correcting code	. 43
2.3.10 QSDC – Mathematical Description	43
2.3.11 Conventional implementation of QSDC system	44
2.3.11.1 Single photon Source	. 45
2.3.11.2 Time coherent single photon counting (TCSPC)	46
Chapter 3: Quantum Cryptography Over Multi-Sites Networks	. 49
3.1 Applying quantum cryptography over multi-site networks	. 52
3.2 Optical fiber network topologies	53
3.3 Multi-site quantum secured communication.	. 57
3.3.1 Case studies.	57
3.3.2 Proposed solution.	58
3.3.3 Additional security elements (Authentication)	62
Chapter 4: Proposed QSDC system – Modelling and Simulation	63
4.1 Simulation Platform.	66
4.2 System Components	67
4.3 Single photon Entangled pair generation	. 68
4.4 Decoy state and PNS attack.	.71
4.5 Simulation results and comparison.	75
Chapter 5: Conclusions and Future work	78
Appendix	82
A.1 History of Cryptography	. 83
A.2 Modern Versus Quantum Cryptography	. 88
References	91

List of Figures

Figure	1.1 Different symmetric and asymmetric encryption techniques	1
Figure	2.1 Mach Zehnder Interferometer	.11
Figure	2.2 Noncollinear type II down conversion	14
Figure	2.3 Noncollinear type I down conversion	14
Figure	2.4~MZI structure to generate quantum entangled photon pairs	.16
Figure	2.5 PNS Attack	36
Figure	2.6 Time domain summation for three different frequencies	.40
Figure	2.7 conventional QSDC communication system	45
Figure	2.8 TCSPC logical model.	47
Figure	2.9 TCSPC block diagram	48
Figure	3.1 Bus topology	54
Figure	3.2 Ring topology	55
Figure	3.3 Star topology	55
Figure	3.4 Fully mesh topology	56
Figure	3.5 Partial mesh topology	56
Figure	3.6 Two connected sites over service provider's aggregate	.58
Figure	3.7 Each site consists of two nodes and each one is connected	ed
to one	side from the neighbor site	59
Figure	3.8 Star connection for multi-sites through the master node	.61
Figure	$4.1\ The\ proposed\ simplified\ QSDC\ system\ block\ diagram$	68
Figure	4.2 Single photon entangled pair source	.68
Figure	4.3 Mach Zehnder Interferometer	.69
Figure	4.4 Distorted output signal after passing through the DSF	.69
Figure	4.5 Chebyshev Band pass filter output signal	70
Figure	4.6 Entangled paired single photon source testing apparatus	.71
Figure	4.7 Decoy state implementation with payload encoding	.72

Figure	4.8 Block diagram of the intensity modulator	73
Figure	4.9 Output modulating waveform.	73
Figure	4.10 AMZI output waveform	73
Figure	4.11 The block diagram of the BSM and Signal Processing	.74
Figure	4.12 The results of the coincidence counts	76
Figure	4.13 The coincidence counting rate	.77

List of Tables

Table	2.1:	comparison	between symmetric	and asymmetric	algo.'s7
Table	4.1:	Simulation	results of the Bell in	equality	75