

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Photostability Studies of Some Analgesic Drugs

Thesis Submitted by

EMAN BANDARY YOUSSOF MOSTAFA

B.Sc. (Chemistry) 2006 M.Sc. (Chemistry) 2011

For the requirement of Ph.D. Degree of Science in Chemistry

To
Department of Chemistry
Faculty of Science, Ain Shams University
2021

Photostability Studies of Some Analgesic Drugs

Thesis Submitted by

Eman Bandary Youssof Mostafa

For the requirement of Ph.D. Degree of Science in Chemistry

Thesis advisors

1- Prof. Dr. Mohamed Sabry Abdel-Mottaleb

Professor of Chemistry, Faculty of Science, Ain Shams University.

2- Prof. Dr. Marwa Hosny Ahmed Tammam

Professor of Analytical chemistry, National Organization for Drug control and Research, Giza.

3- As. Prof. Yousra Mohamed Sabry

Associate Professor of Pharmacology and toxicology, Faculty of pharmaceutical sciences and industries, Future University in Egypt.

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

ABSTRACT

Name: Eman Bandary youssof Mustafa

Title of thesis: Photostability Studies of Some Analgesic Drugs: Stabilization of Photolabile Drugs by Addition of Some Protective Agents.

Degree: Ph.D., Faculty of science, Ain Shams University, 2020.

The photostability of lornoxicam (LRX) and tenoxicam (TNX) in bulk, dosage forms in dilute aqueous solution and human plasma were investigated. The results indicated that the photodegradation rate of both analgesics obeyed first order kinetics. LC/MS/MS technique was utilized to elucidate the photodegradation products for each analgesic. The results showed that both LRX and TNX had the same degree of photolability in the dosage form compared to the bulk. Photolability of LRX and TNX was further investigated in the existence of ten photo-protective agents as well as encapsulated in βcylcodextrin (CD) and the experimental data indicated that citric acid increased the photostability of the two analgesics. The photostability of both analgesics in the existence of citric acid was then validated for linearity, precision, limit of detection (LOD) and limit of quantification (LOQ) appropriate to the international conference on harmonization (ICH) guidelines. LRX and TNX drugs have also been found to create a stable 1:1 inclusion complex in aqueous solution with β -cyclodextrin (β CD). The experimentally determined association constants (K) of LRX- βCD and TNX- βCD are 13.4 and 10.3 M⁻¹, respectively. Quantum chemical computations simulated the preferred orientation of guest molecules in the host.

Geometry optimized results using the ONIOM technique provided more in-depth insights and identified the structure and showed that each drugs were partly encapsulated within the cavity of β -CD. The inclusion binding energy (BE, kcal mol⁻¹) calculations tell the obvious thermal stability of LRX- β CD (-24.19 kcal/mol) over the TNX- β CD (-13.45 kcal/mol) capsulate. Furthermore, the photostabilities of the encapsulated drugs were tested. Drug encapsulation did not result in any additional photostability.Moreover, encapsulation of the drugs in the β -CD resulted in noticeable changes in the electronic characteristics of the drugs, as reflected in their reactivity indices. The fact that the water-soluble β -CD formed inclusion complexes with water-insoluble LRX and TNX enables the drug delivery vehicle for oral administration.

Keywords: Lornoxicam, Tenoxicam, Photostability, Citric acid, ONIOM, Binding Energy, Reactivity indices

CONTENTS

	Chapter 1	page
	Introduction and Literature Survey	
1. Introduction		1
1.1.	Necessities for the Photostability Study	2
1.2.	Photodegradation Reactions	3
1.2.1.	Photoaquation Reactions	5
1.2.2.	Photocyclization Reactions	6
1.2.3.	Photodealkylation Reactions	6
1.2.4.	Photodehalogenation Reactions	7
1.2.5.	Photodehydrogenation Reactions	7
1.2.6.	Photodimerization Reactions	8
1.2.7.	Photoelimination Reactions	8
1.2.8.	Photoinduced hydrolysis Reactions	9
1.2.9.	Photoisomerization Reactions	9
1.2.10	Photooxidation Reactions	10
1.2.11.	Photo-induced Ring Cleavage Reactions	10
1.3.	ICH guideline	11
1.4.	Photostability Testing	12
1.5.	Methods for Photostabilization	14
1.5.1.	Spectral overlay	14
1.5.2.	Opacifying and coating agent's usage	14
1.5.3.	Complex formation	15
	Cyclodextrin complexation	15
1.5.5.	Liposome trapping	15
1.5.6.	Usage of Stabilizers	15
1.5.7.	Solvent choice	16
1.5.8.	Choice of pH	16
1.6.	Efficacy and safety of organic UV filters used in	16
cor	mmercial products	
1.7.	Introduction and literature survey on the selected	19
-	otostabilizing agents	
1.7.1.	Aminobenzoates	19
1.7.2.	Tartaric acid	20
1.7.3.	Sodium benzoate	20
1.7.4.	Methylparaben	21
1.7.5.	Propylparaben	22
1.7.6.	Boric acid	22

1.7.7.	Citric acid	23
1.7.8.	Titanium Dioxide	23
1.7.9.	Ascorbic acid	24
1.7.10	Caffeine	25
1.8.	Introduction on Analgesics	25
a)	Aspirin and other salicylates	25
b)	Disease-modifying antirheumatic drugs (DMARDs)	25
c)	Gold compounds	26
d)	Nonsteroidal anti-inflammatory drugs (NSAIDs)	26
e)	Opioids analgesics	26
f)	Paracetamol and other para-aminophenols	27
1.9.	Introduction and literature survey of selected drugs	27
1.9.1.	Lornoxicam	27
1.9.2.	Tenoxicam	38
	Chapter 2	
	Experimental	
2.1.	Materials	46
2.1.1.	Standard samples	46
	Lornoxicam (LRX)	46
2.1.3.	Mefenamic acid (MFA)	46
2.1.4.	Tenoxicam (TNX)	46
2.1.5.	Ketotifen (KTF)	46
2.2.	Pharmaceutical Formulations	46
2.2.1.	Xefo tablets	46
	Lornox tablets	47
2.2.3.	Anoxicam tablets	47
2.3.	Chemicals and Reagents	47
2.4.	Preparation of standard solutions	48
	Preparation of stock standard solutions	48
2.4.2.	Preparation of working standard solutions	48
2.5.	Preparation of sample solutions of pharmaceutical	48
for	mulations	
2.6.	Preparation of working standard solutions of the	49
ana	algesics in a combination with photostabilizing agents	
2.7.	Preparation of sample solutions in human plasma	50
2.7.1.	Extraction method of LRX from plasma	50
2.7.2.	Preparation of irradiated plasma samples	50
2.7.3.	Extraction method of TNX from plasma	51
2.7.4.	Preparation of irradiated plasma samples	51

2.8.	Apparatus	51
2.9.	Procedures and methods	53
2.9.1.	General procedures for photostability testing	53
2.9.2.	Chromatographic conditions for LRX	54
2.9.3.	Chromatographic conditions for TNX	54
2.9.4.	LC/MS/MS analysis	55
2.9.5.	Methods Validation	55
2.9.6.	Computational Methods	58
2.9.7.	Photostabilization studies of LRX and TNX in their	59
	pharmaceutical formulations by citric acid	
2.9.7.1	,	59
2.9.7.2	,	59
	Chapter 3	
	Results and Discussion	
3.1.	Photodegradation studies of LRX and TNX	60
_	Effect of pH	60
	Spectrophotometric analysis	60
	HPLC investigation	65
	LC-MS/MS investigation	73
3.2.	Photodegradation of LRX and TNX in their dosage	81
for	rms	
3.3.	Photodegradation of LRX and TNX in biological	89
sar	mples (human plasma)	
3.4.	Improving LRX and TNX photostability using different	92
ph	otostabilizing agents	
3.4.1.	Physical filter (TiO ₂)	92
3.4.2.	The effect of different photostabilizing agents	95
3.4.3.	Impact of different concentrations of citric acid,	125
	ascorbic acid and PABA on LRX and TNX	
	photodegradation rates	
3.5.	Data validation for analysis of LRX and TNX in	127
exi	stence of 1.5% citric acid	
	Linearity	127
3.5.2.	Precision	129
3.6.	Improving the photostability of LRX and TNX in	131
pharmaceutical preparations and biological samples		
3.6.1.	Addition of 1.5 % citric acid to pharmaceutical	131
	preparations containing LRX and TNX	

3.6.2. Addition of 1.5 % citric acid to the biological samples (human plasma) containing LRX and TNX Chapter 4	133	
Binding energy and photostability of the β-cyclodextrin encapsulates of lornoxicam and tenoxicam drugs: A combined experimental and theoretical study		
4.1. Cyclodextrins	136	
4.2. Computational chemistry	139	
4.3. β-CD complexation	144	
·	145	
4.4. The effect of β-cyclodextrin on LRX and TNX	143	
photodegradation rates	148	
4.5. Theoretical calculation of binding energy(ΔE_B)		
4.6. DFT calculations	148	
4.7. The ONIOM calculations	150	
Summary and conclusion	153	
References	159	

Tables List

Tables List	Page
Table (1). Rate of photodegradation of LRX in aqueous solutions at pH (2, 7 and 10), half-life times and percentage of LRX remaining	65
Table (2). Rate of photodegradation of TNX in aqueous solutions at pH (2, 7 and 10), half-life times and percentage of TNX remaining	65
Table (3). Rate of photodegradation of analgesics in dosage form, half-life time and percentage of remaining	82
Table (4). The photodegradation rates of LRX and TNX in existence of 0.01% ${\rm TiO_2}$ pH, half-life times and percentage remaining	95
Table (5). Thephotodegradation rates of LRX and TNX in existence of different photostabilizing agents	99
Table (6). The rates of photodegradation of LRX (2×10 ⁻⁵ mol L ⁻¹) and TNX (2×10 ⁻⁵ mol L ⁻¹) in the existence of different concentrations of the most effective photostabilizing agents	126
Table 7. Parameters of linearity for the photostability of LRX in existence of 1.5% citric acid	129
Table 8. Parameters of linearity for the photostability of TNX in existence of 1.5% citric acid	129
Table (9). Intra-day and inter-day precision for the photostability of LRX in bulk powder in existence of 1.5% citric acid	130
Table 10. Intra-day and inter-day precision for the photostability of TNX in bulk powder in existence of 1.5% citric acid	131
Table 11. Thephotodegradation rate of LRX in (aqueous solutions, dosage form and dosage form with 1.5% citric acid), half-life times and	133

percentage of LRX remaining	
Table 12. Thephotodegradation rate of TNX in	133
(aqueous solutions, dosage form and dosage form	
with 1.5% citric acid), half-life times and	
percentage of TNX remaining	
Table 13. Calculated total molecular energy,	150
HOMO, LUMO, binding energy and reactivity	
indices of the molecules studied (DFT using	
APDF/6-31(d,p) method)	
Table 14: Thermodynamic evidence for molecular	152
inclusion complexes considered by (βCD) using	
ONIOM (APFD/6-31G (d.p): PM6) in water*	

Figures List

Figures List	Page
Fig. 1. Photocyclization reactions of	6
meclofenamic acid	
Fig.2. Photodealkylation reactions of	7
chloroquine	
Fig. 3. Photodehalogenation reaction of	7
norfloxacin	
Fig.4. Photodehydrogenation reactions of	8
nifedipine	
Fig.5. Photodimerization reaction of primaquine	8
Fig.6. Photoelimination reaction of mefloquine	9
Fig.7. Photoinduced hydrolysis reaction of	9
sulfacetamide	
Fig.8. Photoisomerization reaction of aztreonam	10
Fig.9. Menadione Photooxidation	10
Fig.10. Norfloxacin photoinduced ring cleavage	11
reaction	
Fig. 11. Energy absorption by an organic filter	17
Fig. 12. Pathways of energy release	18
Fig. 13. The energy of band space among the	19
bands of valence and conduction	20
Fig. 14. Lornoxicam chemical structure	28
Fig. 15. Chemical structure of Tenoxicam	39
Fig. 16. The effect of varying pH on LRX	62
absorption spectra [A: pH 2, B: pH 7 and C: pH	
10] with irradiation time Fig. 17. The effect of varying pH on TNX	63
absorption spectra [A: pH 2, B: pH 7 and C: pH	03
10] with irradiation time	
Fig. 18. Plot of Ln [LRX] vs. irradiation time at	64
different pH media (pH=2, 7 and 10)	04
Fig. 19. Plot of Ln [TNX] vs. irradiation time at	64
different pH media (pH=2, 7 and 10)	0 1
Fig. 20. HPLC chromatograms of LRX (A) Pre-	66
exposure, (B) After-exposure (21h of irradiation)	
at pH 2	
Fig. 21. HPLC chromatograms of LRX (A) Pre-	67

- exposure, (B) After-exposure (21h of irradiation) at pH 2
- **Fig. 22.** HPLC chromatograms of LRX (A) Preexposure, (B) After-exposure (21h of irradiation) at pH 10
- **Fig. 23.** HPLC chromatograms of TNX (A) Pre- 70 exposure, (B) After-exposure (21h of irradiation) at pH 2
- **Fig. 24.** HPLC chromatograms of TNX (A) Pre- 71 exposure, (B) After- exposure (21h of irradiation) at pH 7
- **Fig. 25.** HPLC chromatograms of TNX (A) Pre- 72 exposure, (B) After- exposure (21h of irradiation) at pH 10
- **Fig. 26.** Mass spectra of the positive ion of LRX. 76 (A)Pre-exposure and (B) After-exposure (21h of irradiation) at pH 7
- **Fig. 27.** Mass spectra of the positive ion of TNX. 79 (A)Pre-exposure and (B) After-exposure (21h of irradiation) at pH 7
- **Fig. 28.** Absorption spectra of LRX in their 83 dosage forms (A) Xefo 4 mg tablet and (B) Lorno 8 mg tablet at different time of irradiation
- **Fig. 29.** Plot of Ln [LRX] vs. irradiation time in 84 different dosage forms after irradiation (21h)
- **Fig. 30.** HPLC chromatograms of Xefo 4 mg 85 tablets in pH 7 solution (A) Pre-exposure, (B) After-exposure (21h of irradiation)
- **Fig. 31.** HPLC chromatograms of Lorno 8 mg 86 tablets in pH 7 solution (A) Pre-exposure, (B) After-exposure (21h of irradiation)
- **Fig. 32.** Absorption spectra of anoxicam 20mg 87 tablet in pH 7 at different time of irradiation
- **Fig. 33.** Plot of Ln [TNX] vs. irradiation time in 87 anoxicam 20mg tablet in pH 7after irradiation (21h)
- **Fig. 34.** HPLC chromatograms of anoxicam 20mg 88 tablet in pH 7 solution (A) Pre-exposure, (B) After-exposure (21h of irradiation)