

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

SPRINKLER IRRIGATION SYSTEM MANAGEMENT BASED ON ENGINEERING DESIGN FACTORS

By

ENGY MOSLAME MOHAMED KHAIR

B.Sc .Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2011M. Sc. Agric. Eng., Faculty of Agriculture, Ain Shams University, 2015

A Thesis Submitted in Partial Fulfillment

Of

the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Sciences
(On Farm Irrigation and Drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

SPRINKLER IRRIGATION SYSTEM MANAGEMENT BASED ON ENGINEERING DESIGN FACTORS

By

ENGY MOSLAME MOHAMED KHAIR

B.Sc .Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2011M. Sc. Agric. Eng., Faculty of Agriculture, Ain Shams University, 2015

This thesis for the Ph.D. Degree has been approved by:

Date of Examination: 27 / 2 / 2021

Dr.	Mohamed Abd El-Wahap Kassem Professor of Agricultural Engineering, Faculty of Agriculture, Cairo University.
Dr.	Yasser Ezzat Arafa Professor of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.
Dr.	Khaled Faran Taher El-Bagoury Professor of Agriculture Engineering, Faculty of Agriculture, Ain Shams University.
Dr.	Mahmoud Mohamed Hegazi Professor Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

SPRINKLER IRRIGATION SYSTEM MANAGEMENT BASED ON ENGINEERING DESIGN FACTORS

By

ENGY MOSLAME MOHAMED KHAIR

B.Sc. Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2011M. Sc. Agric. Eng., Faculty of Agriculture, Ain Shams University, 2015

Under the supervising of:

Dr. Mahmoud Mohamed Hegazi

Professor Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University. (Principle Supervisor)

Dr. Khaled Faran Taher El-Bagoury

Professor of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Wael Mahmoud Moktar Sultan

Chief Researchesof Agricultural Engineering, Agricultural Engineering Research Institute(AEnRI).

ABSTRACT

ENGY MOSLAME MOHAMED KHAIR: SPRINKLER IRRIGATION SYSTEM MANAGEMENT BASED ON ENGINEERING DESIGN FACTORS. Unpublished Ph.D. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2021.

The engineering factors are necessary to improve sprinkler system efficiency. So, this study had been focused on some engineering factors as:nozzle characteristic, roughness of the sprinkler entrance, overlappingratioand raiser heighton sprinkler performance ofprecipitation rate, distribution uniformity, and coefficient uniformity. The experimentwas carried out during the period of 2017 up to 2020 in two stages: the first stage was conducted at the National Laboratory for Testing the Components of Irrigation Networks and Field Drainage, Agricultural Engineering Research Institute "AEnRI", ARC and the second stage was carried outin open field in Cairo University, Faculty of Agriculture, Giza region. This study focused on studying performance of two kinds of sprinklersize 3/4 and 1/2 inch each of them had many local nozzles at different operating pressures. The first stage of this study concentrated on developing for 34 sprinkler size with 5mm circle gradual enlargement plastic nozzle (No10)usingroughness connector RC -9mm-smooth (P2)to increase its performance achieving increased uniformity by 8.5% at operating pressure of 200kPa and for ½ sprinkler size designing newnozzle (No 9) toobtain acceptable uniformity 74% at operating pressure of 150kPa. The second stage of this study, focal point using of (3/4 sprinkler size with nozzle No 10 and P2, 70% overlapping and 1meter raiser) to increase uniformity by 5.91%, saving 10.3% of water applied and decreasing total annual cost by 4.4%.

Key words: Nozzle, pressure, performance, velocity and overlapping.

ACKNOWLEDGMENT

Thanks to **Allah** for his gracious kindness in all the endeavors that the author has taken in her life.

The author wishes to express gratitude and most appreciation to **Prof. Dr. Mahmoud Mohamed Hegazi**, Prof. Emeritus of Agric. Eng., Ain shams Univ. for his valuable advice, encouragement and his great effort to produce this work.

The author also wishes to thank **Prof. Dr. Khalid Faran El-Bagoury**, Prof. of Agric. Eng., Ain shams Univ. for supervising, his great advices, patience and his perception to carry out this work

With sincere appreciation due to **Prof. Dr. Wael Sultan**, Chief Researches and director of the National Laboratory for Testing the Components of Irrigation Networks and Field Drainage, AEnRI for his constant help, advices and his support during carrying out this work.

Thanks, are expressed to staff members of Agric. Eng. Department at Faculty of Agric., Ain Shams Univ. for encouraging me during carried out this work.

Seriously thanks to **Prof. Dr. Hazem Mehawad**, Chief Researches and Deputy Director of Agricultural Engineering Research Institute for his valuable advice, support and helping me throughout this work.

Special thanks to all staff members of The National Laboratory for Testing the Components of Irrigation Networks and Field Drainage and AEnRI for their great effort throughout this work.

Thanks, a lot to all staff members of Agric. Eng. Depart. at Faculty of Agric., Cairo Univ., for their helping me during field experiments of this work

Thanks a lot to **Eng. Mahmoud Abd El-Razik**, Abd El-Eazikturnery workshop, for helping me turning the new designed nozzle at this work.

Finally,the author wishes to express her deepest appreciation to **her family** for their understanding, patient, loving encouragement and cooperation during carried out this work.

CONTENTS

No.	Title	Page
	LIST OF TABLES	iii
	LIST OF FIGURES	iv
	LIST OF APPENDIX	vii
	LIST OF ABBREVIATIONS	viii
I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	3
2.1	Sprinkler irrigation system	3
2.2	Engineering design factors of Sprinkler irrigation	4
	systems	
2.2.1.	Sprinkler Nozzle	5
2.2.2.	Inner surface roughness affects velocity	7
2.2.3.	Sprinklers overlapping	9
2.3	Evaluate Sprinkler Irrigation System	11
III.	MATERIALS AND METHODS	14
3.1.	Materials	14
3.1.1.	Studied sprinklers	15
3.1.2.	Studied Nozzles	16
3.1.3.	Roughness connector	18
3.1.4.	Drawing Computer Program	21
3.1.5.	Statistical analysis	21
3.2.	Methods	21
3.2.1.	Measuring technique	21
3.2.2.	Sprinkler evaluation Calculation Methods	24
IV.	RESULTS AND DISCUSSION	30
4.1.	Laboratory experiments	30

4.1.1.	Nozzles performance	30
4.1.2.	Roughness connector performance	42
4.1.3.	overlapping performance	48
4.2.	Filed experiment	55
4.3.	Experimental layout evaluation	59
V.	SUMARY AND CONCLUSIONS	64
VI.	REFERENCE	68
VII.	APPENDIX	77
	ARABIC ABSTRACT	

LIST OF TABLES

No.	Titles	Page
1	Relationship between sprinkler overlapping and wind speed	11
2	Volumetric calibration of droplet diameter on oil	22
3	Discharge exponent classification	25
4	Rating of low quarter Distribution uniformity (DUlq) for sprinklers	27
5	Index of breaks up Jet of different nozzles (circle orifice) at different operating pressures	36
6	Index of Jet breaks up at various nozzle types at operating pressures 175 kPa	38
7	Cost of nozzle no 3-P4 (70% overlapping, 1m riser height) at operating pressure 200 kPa	61
8	Cost of nozzle no 7 (50% overlapping, 0.5 m riser height) at operating pressure 150 kPa	63

LIST OF FIGURES

No.	Title	Page
1	Studied sprinkler's bodies	16
2	Schematics and Technical specification of the investigated circle nozzles	16
3	Schematics and Technical specification of the investigated square nozzles	17
4	Schematics and Technical specification of the investigated new nozzle	18
5	Iron roughness connector (P)	19
6	Friction losses Instrument	20
7	The array precipitation rate cans of overlapping	21
8	The picture of droplet on oil	22
9	Field overlapping test layout	23
10	Flow rate at different operating pressure of different nozzles diameter (circle orifice)	31
11	Flow rate at different operating pressure of different nozzles diameter (square orifice)	32
12	Flow rate at different operating pressure of new nozzle	32
13	Coverage radius of different nozzles diameter (circle orifice) at different operating pressure	33
14	Coverage radius for different nozzles diameter (square orifice) at different operating pressure	34
15	Coverage radius of new nozzle at different operating pressure	35
16	Rotation time of circle different nozzles (circle orifice) at different operating pressure	36

17	Rotation time for different nozzles diameter (square orifice) at different operating pressure	37
18	Rotation speed of new nozzle at different operating pressure	39
19	Christiansen coefficient for different nozzles diameter (circle orifice) vs. operating pressure	40
20	Christiansen coefficient for different nozzles diameter (square orifice) vs. operating pressure	41
21	Christiansen coefficient of new nozzle vs. operating pressure	41
22	Fiction losses on ½ inch roughness connectors at different flow rate	43
23	Fiction losses on 3/4 inch roughness connectors at different flow rate	43
24	Effect of roughness connectors on flow rate of nozzle no 3 at operating pressure 200 kPa	44
25	Effect of roughness connectors on coverage radius of nozzle no 3 at operating pressure 200 kPa	45
26	Break-up Jet Index of nozzle no 3for various roughness connectors at operating pressures 200 kPa	45
27	Effect of roughness connectors on droplet diameter of nozzle no 3 at operating pressures 200 kPa at the coverage circle end	46
28	Effect of roughness connectors on Reynolds number of nozzle no 3 at operating pressures 200 kPa	47
29	Effect of roughness connectors on Christiansen coefficient of nozzle no 3 at operating pressures 200 kPa	48
30	Hedia program Precipitation rate of overlapping 50% at operating pressure 200kPa of nozzle no 3	49
31	Hedia program Precipitation rate of overlapping 50% at operating pressure 200kPa of nozzle no 3 with P4	49

32	Hedia program Precipitation rate of overlapping 50% at operating pressure 150 kPa of nozzle No 7	50	
33	Water application profiles for nozzle no 3, 50% overlapping at operating pressure 200 kPa	51	
34	Water application profiles for nozzle no 3, 70% overlapping	51	
	at operating pressure 200 kPa	31	
35	Water application profiles for nozzle no 3 with P4, 50%	52	
55	overlapping at operating pressure 200 kPa	32	
36	Water application profiles for nozzle no 3 with P4, 70%	53	
50	overlapping at operating pressure 200 kPa		
37	Water application profiles for nozzle no 7, 50% overlapping	53	
	at operating pressure 150 kPa	33	
38	Water application profiles for nozzle no 7, 70% overlapping	54	
30	at operating pressure 150 kPa	34	
39	Comparing between different overlapping ratio of field	55	
39	experiment at operating pressure 200 kPa of nozzle no 3	33	
	Comparing between different overlapping ratio of field		
40	experiment at operating pressure 200kPa of nozzle no3 with	56	
	P4		
41	Comparing between different overlapping ratio of field	57	
	experiment at operating pressure 200 kPa of nozzle no 7		
42	Comparing between raiser height 0.5m and 1m field	58	
	experiment at operating pressure 200 kPa of nozzle no 3-P4		
43	Nozzle no 3 with P4 (70% overlapping 1m riser height)	60	
	layout at operating pressure 200 kPa		
44	Nozzle no 7 (50% overlapping, 0.5 m riser height) layout at	62	
	operating pressure 150 kPa	02	

LIST OF APPENDIX

No.	Title	Page
1.A.	HEDIA simulation model interface	77
1.B.	HEDIA simulation model input (precipitation rate and coverage radius)	77
1.C.	HEDIA simulation model process (precipitation rate)	78
1.D.	HEDIA simulation model process (overlapping)	78
1.E.	HEDIA simulation model output (precipitation rate and Uniformity)	79
1.F.	HEDIA simulation model output (precipitation rate and Uniformity)	79
2	Estimate and actual droplet diameter of different nozzle types at different operating pressures	80