

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University
Faculty of Engineering
Engineering Physics and Mathematics Department

Power Network Reconfiguration using Decision-making Optimization for Hosting Capacity Enhancement

By

Ibrahim Mohamed Diaaeldin Ibrahim Elsayed

B.Sc. Electrical Power and Machines, Ain Shams University, 2014M.Sc. Engineering Mathematics, Ain Shams University, 2017

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Doctor of philosophy in Applied Engineering Mathematics

Supervised by

Prof. Dr. / Almoataz Youssef Abdelaziz Mohamed

Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

Assoc. Prof. / Ahmed Mohamed Ibrahim Hassan El-Rafei

Engineering Physics and Mathematics Department Faculty of Engineering, Ain Shams University

Assoc. Prof. / Shady Hossam Eldeen Abdel Aleem

Mathematical, Physical and Engineering Sciences Department 15th of May Higher Institute of Engineering

Cairo 2021

Ain Shams University Faculty of Engineering Engineering Physics and Mathematics Department

Power Network Reconfiguration using Decision-making Optimization for Hosting Capacity Enhancement

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree of Doctor of Philosophy in Applied Engineering Mathematics

By

Ibrahim Mohamed Diaaeldin Ibrahim Elsayed

M.Sc. in Engineering Mathematics, Ain Shams University, 2017B.Sc. in Electrical Engineering, Ain Shams University, 2014

Examiners Committee

Title	Signature
Prof. Dr. Zeinab Hanem Mohamed Osman Fahmy	
Faculty of Engineering, Cairo University	
Prof. Dr. Reda Amin Elbarkouky	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Almoataz Youssef Abdelaziz Mohamed	
Faculty of Engineering, Ain Shams University	
Assoc. Prof. Ahmed Mohamed Ibrahim Hassan El-Rafei	
Faculty of Engineering, Ain Shams University	• • • • • • • • • • • • • • • • • • • •

Date: 26 /4 / 2021

Researcher Data

Name: Ibrahim Mohamed Diaaeldin Ibrahim Elsayed

Researcher name in publications: Ibrahim Mohamed Diaaeldin; Ibrahim Diaaeldin

Cell: +2-01016684188; +2-01284404474

E-mail: ibrahimmohamed@eng.asu.edu.eg; ibrahimmohamed@ieee.org

ORCID iD: 0000-0002-8720-4780

Scopus ID: 57211983049

Web of Science ResearcherID: AAH-2722-2020

Date of birth: March 1, 1993

Place of birth: Giza

Academic Degree: M.Sc. in Engineering Mathematics.

Field of Specialization: Applied Engineering Mathematics

University issued the degree: Faculty of Engineering, Ain Shams University.

Year of issued degree: 2017

Current job: Teaching Assistant in the Engineering Physics and Mathematics Department,

Faculty of Engineering, Ain Shams University, Abbassia 11517, Cairo, Egypt.

STATEMENT

This thesis is submitted as partial fulfillment of Ph.D. degree in Engineering Mathematics, Faculty of Engineering, Ain Shams University, Abbassia 11517, Cairo, Egypt.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity.

Ibrahim Mohamed Diaaeldin

ACKNOWLEDGEMENT

Thanks, and indebtedness is due to ALLAH, who made this work possible.

First, I would like to express gratitude to Prof. Almoataz Abdelaziz, for his continuous encouragement and aid towards fulfilling this work. He always encourages me to do my best in my research works. He deserves more than one can express. Second, I would like to express gratitude to Dr. Shady Abdel Aleem for his continuous encouragement, discussion, and handin-hand support towards fulfilling this work. He deserves more than what words can express; he taught me more than six months: how to write a manuscript, how to review it, and how to choose the appropriate journals. Besides, fruitful and continuous discussions were conducted via face-to-face meetings and mobile calls. He is my best academic mentor; he taught me: how to be precise in my scholarly works, how to fetch my objectives from other published research works, and how to present my work professionally. Third, the words cannot express my feelings towards Dr. Ahmed El-Rafei; he has been helping before and after applying to my Ph.D. and provided me many insights towards finding better ways to enrich my research career. Fourth, I would like to express gratitude to Prof. Ahmed F. Zobaa, Brunel University in London, for his kind support and help from the beginning of this work. I was honored to work with Prof. Zobaa; he is one of the pioneers in the renewable energies' integration field and power quality. Fifth, I would like to express gratitude to Dr. Ziad M. Ali, Aswan university, for his kind support and help. Sixth, I would like to express gratitude to Prof. Francisco Jurado, University of Jaen, Spain, for his kind support and help. Finally, I would like to express gratitude to Prof. Dr. Wael Fikry, Prof. Abd-Allah Elmarhomy, Dr. Faiza Selim, Dr. Sherif Mohsen Ismael, Eng. Mahy Ahmed, Eng. Othman Ahmed, Eng. Ahmed Elsherbeny, and my parents, words cannot express my gratitude for their continuous support and help.

Table of Contents

Researcher Data	iv
Statement	vi
Thesis Summary	xiii
Preface	XV
Chapter 1: Introduction	1
1.1 Research Motivation	3
1.2 Research Objectives	3
1.3 Thesis Outline	3
Chapter 2: Mathematical Background	5
2.1 Introduction	5
2.2 Graph Theory	5
2.2.1 Definitions	6
2.2.1.1 Undirected Simple Graphs	6
2.2.1.2 Undirected Multi-Graphs	6
2.2.1.3 Directed Graphs (Digraph)	6
2.2.1.4 Directed multigraph permitting loops	6
2.2.1.5 Mixed Graphs	7
2.2.1.6 Weighted Graphs	7
2.2.2 Degree of Vertices	7
2.2.3 Tree	8
2.2.4 Spanning Trees	8
2.2.4.1 Kirchhoff's Theorem	9
2.3 Optimization	10
2.3.1 Single Objective Optimization Techniques	10
2.3.1.1 Classical Optimization Techniques	10
2.3.1.1.1 Nonlinear Programming	11
2.3.1.1.1.1 Lagrange Multipliers	11
2.3.1.1.2 Mixed-Integer Nonlinear Programming Using Branch and Bound	12
2.3.1.1.2.1 Illustrative Example	14
2.3.1.2 Heuristic Optimization Techniques	15
2.3.1.2.1 Artificial Eco-System Optimization	16
2.3.1.2.2 Particle Swarm Optimization	18
2.3.1.2.3 Differential Evolution	19
2.3.2 Multi-Objective Optimization Techniques	20
2.3.2.1 Weighted Sum Method	20
2.3.2.2 ε-Constrained Method	21
2.4 Decision Making	21
2.4.1 TOPSIS	21
2.5 Radiality of Distribution Networks	22
2.6 Load Flow of Distribution Networks	23
2.7 Optimization Process for Solving NR problem	25
2.8 Scenarios Reduction for Uncertain Parameters	26
2.8.1 Fuzzy C-means Clustering	26
2.8.1.1 Example on FCM scenarios reduction	27
Chapter 3: Literature Review	29

3.1 Introduction	29
3.2 Distribution Network Reconfiguration	30
3.3 Soft Open Points	32
Chapter 4: Optimal Network in Active Distribution Networks with Soft Open Points	37
4.1 Introduction	37
4.2 Problem Statement	38
4.2.1 Developed Network Reconfiguration Procedure	38
4.2.2 SOP Modeling	41
4.2.3 DG Modeling	43
4.2.4 PQ Indices	43
4.2.4.1 Load Balancing Index (LBI)	43
4.2.4.2 Aggregate Voltage Deviation Index (AVDI)	44
4.3 Problem Formulation	44
4.3.1 Objective Function	44
4.3.2 Constraints and Operation Conditions	44
4.3.3 Search Algorithm	45
4.3.3.1 Continuous HSS	45
4.3.3.2 Discrete HSS	47
4.3.3.3 Discrete- Continuous HSS	48
4.4 Results and Discussion	49
4.4.1 IEEE 33-node Distribution System	49
4.4.2 83-node Distribution System	56
4.5 Summary	64
Chapter 5: A Novel Graphically Based Network Reconfiguration for Power Loss	66
Minimization in Large Distribution Systems	
5.1 Introduction	66
5.2 Problem Statement	66
5.3 Power Flow Equations	67
5.4 Proposed Graphical Distribution Network Reconfiguration	67
5.4.1 Illustrative example on the proposed DNR	69
5.5 Problem Formulation	71
5.6 Results and Discussion	72
5.7 Summary	79
Chapter 6: Optimal Network Reconfiguration and Distributed Generation Allocation	81
using Harris Hawks Optimization	-
6.1 Introduction	81
6.2 Problem Statement	81
6.2.1 Power Flow Equations	81
6.2.2 DNR	82
6.2.3 Distributed generation based smart inverters	82
6.2.4 Fast voltage stability index (FVSI)	83
6.3 Problem Formulation	83
6.3.1 Power Loss	83
6.3.2 Objective Function	83
6.3.3 Constraints	83
6.3.4 Harris Hawks Optimization Algorithm	84
6.4 Results and Discussion	85
6.4.1 Only DNR	86
6.4.2 Simultaneous DNR and DGs Allocation	87
6.5 Summary	89

Chapter 7: A Novel Distributed Generation Planning Algorithm Via Graphically-Based	90
Network Reconfiguration and Soft Open Points Placement Considering Load Growth	
7.1 Introduction	90
7.2 Problem Statement	91
7.2.1 Power Flow Formulation	91
7.2.2 Network Reconfiguration	91
7.2.3 Soft Open Points	91
7.2.4 Distributed Generation	92
7.2.5 Performance Indices	92
7.2.5.1 Aggregated Load Balancing Index	92
7.2.5.2 Fast Voltage Stability Index	92
7.2.6 Load Growth Formulation	93
7.3 Problem Statement	93
7.3.1 Objective Function	93
7.3.2 Operational Constraints	93
7.3.3 Archimedes Optimization Algorithm	94
7.3.4 Proposed Optimization Algorithm	95
7.4 Results and Discussion	96
7.4.1 NR only	96
7.4.2 HC Maximization Via NR and SOPs Placement	98
7.4.2.1 IEEE 33-node distribution network	99
7.4.2.2 IEEE 69-node distribution network	102
7.4.2.3 59-node distribution network	105
7.4.2.4 135-node Brazilian distribution network	108
7.4.3 Assessment of Load Growth on HC Maximization	111
7.5 Summary	113
Chapter 8: Hosting Capacity Enhancement by Soft Open Points and Distribution	114
System Reconfiguration: Multi-Objective Bilevel Optimization	
8.1 Introduction	114
8.2 Problem Statement	114
8.2.1 Power Flow Equations	115
8.2.2 Distribution Network Reconfiguration	115
8.2.3 DG Modeling	116
8.2.4 SOP Modeling	116
8.2.4.1 Deterministic Case	117
8.2.4.2 Probabilistic Case	119
8.2.5 Scenario Reduction	119
8.3 Problem Formulation	119
8.3.1 Deterministic HC	120
8.3.1.1 Upper Level	120
8.3.1.2 Lower Level	121
8.3.2 Probabilistic HC	121
8.3.2.1 Upper Level	121
8.3.2.2 Lower Level	121
8.4 Results and Discussion	122
8.4.1 Deterministic Case Study	124
8.4.1.1 Real 59-Node Distribution System in Cairo	124
8.4.1.2 Real 83-Node Distribution System in Taiwan	124
8.4.2 Probabilistic Case Study	126
8.4.2.1 Real 59-Node Distribution System in Cairo	126

8.4.2.2 83-Node Distribution System	129
8.5 Summary	132
Chapter 9: Scenario-based Network Reconfiguration and Renewable Energy Resources	133
Integration in Large-scale Distribution Systems Considering Parameters Uncertainty	
9.1 Introduction	133
9.2 Problem Statement	134
9.2.1 Power flow equations	134
9.2.2 Distribution Network Reconfiguration	134
9.2.3 DG modeling	134
9.2.3.1 Wind Turbine DG	134
9.2.3.2 Solar Photovoltaic DG	135
9.2.4 Scenarios Reduction	135
9.2.5 TOPSIS	137
9.2.6 System Performance Indices	137
9.2.6.1 Load Balancing Index (LBI)	138
9.2.6.2 Aggregate Voltage Deviation Index (AVDI)	138
9.2.6.3 Fast Voltage Stability Index (FVSI)	138
9.3 Problem Formulation	139
9.3.1 Objective function	139
9.3.2 Constraints	140
9.4 Results and Discussion	141
9.5 Summary	159
Chapter 10: Thesis Merits, Contributions and Future Works	160
10.1 Thesis Merits and Contributions	160
10.2 Recommendations for the Egyptian Power Grid	161
10.3 Future Works	162
References	163