

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University
Faculty of Engineering
Irrigation & Hydraulics Department

Enhance Irrigation and Drainage Management Under the Water Scarcity in Egypt By

Eng. Emad Mohamed Mahmoud Khalil M.Sc. Civil Engineering – Cairo University 2016 Ministry of Water Resources and Irrigation

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of philosophy in Civil Engineering

Supervised by Prof. Dr. Mohamed M. Nour EL Din

Emeritus Professor at Irrigation and Hydraulics Department

Faculty of Engineering, Ain Shams University

Prof. Dr. Mohamed Safwat Abdel Dayem

Emeritus Professor at the National Water Research Center, Egypt

Dr. Peter Hany Riad Dr. Ehab Mostafa Fatoh

Associated professor Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University Associated professor Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University

Dr. Aiman Khalil El Saadi

Associated professor

National Water Research Center, Egypt

Cairo 2021

Enhance Irrigation and Drainage Management Under the Water Scarcity in Egypt

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of philosophy in Civil Engineering Irrigation and Hydraulics

By

Eng. Emad Mohamed Mahmoud Khalil

Master of Science In Civil Engineering 2016

Examiners' Committee

Nam and Affiliation	Signature
Prof. Hussein Abdel Halim El Gammal Director of Drainage Research Institute, the National Water Research Center	
Prof. Nagy Ali Ali Hassan Irrigation and Hydraulics , Ain Shams University	
Prof. Mohamed Mohamed Nour EL Din Irrigation and Hydraulics , Ain Shams University	
Dr. Peter Hany Riad Irrigation and Hydraulics , Ain Shams University	

Date: .../.../ 2021

STATEMENT

This dissertation is submitted to Ain Shams University for partial fulfillment of the requirements for the Degree of Doctor of philosophy in Civil Engineering.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Date : / /2021

Name : Emad Mohamed Mahmoud Khalil

Signature :

CURRICULUM VITAE

Emad M. Mahmoud Senior Water Resources Engineer with over 18 years of experience in the field of water resources management, irrigation and drainage management covering the full spectrum of: strategic planning, design, operation, follow up, field reconnaissance, project planning and management, capacity building, awareness raising, monitoring, and program appraisal.

Having vast professional experience in Water Resources Engineering, I have been involved in diversified domain projects of Water Resources Engineering ranging from medium to large scale projects.

A considerable experience in hydrology, water resources management, environmental engineering, and development-related fields have been acquired Throughout my career.

For more than 5 years, I was involved in direct coordination with decision makers in the water sector including equal experience with several international institutions; World Bank (WB), Golable Environmental Facility (GEF) and other international organizations.

ACKNOWLEDGEMENT

First, I would like to express my sincere gratitude to my supervisor Prof. Mohamed Nour El Din for the continuous support, his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis.

I would like to thank Prof. Safwat Abdel-Dayem for his insightful comments and encouragement. His hard questions incented me to widen my research from various perspectives.

My sincere thanks also go to Dr. Peter Raid, Dr. Ehab Mostafa and Dr. Aiman AL Saadi who provided me with valuable advice, and stimulating discussions. Without their precious support it would not be possible to conduct this research.

My deepest gratitude goes to the Examiners' committee Prof. Nagy Ali and Prof. Hussien EL Gammal for the guidance and suggestions brought in threads of thought that made my research so much richer and my dissertation something I can be proud of having written.

I am also grateful to Dr. Eman Syed, Head of Planning Sector for her continuous support and guidance throughout the development of this thesis.

Great thanks are due to my family and colleagues who patiently supported and encouraged me during the years of research.

ABSTRACT

Agricultural subsurface drainage is a common practice designed to maintain the water table depth in order to prevent waterlogging, increase agricultural crop yield and provides leaching capability to control salinity build-up in the root zone. Egypt adopted a strategy to cover all the arable lands with artificial drainage systems. However, loss of excess water through free drainage system is a major cause of low irrigation efficiency at field level in Egypt. The drainage water is left to flow continuously where water is quickly removed from the soil profile before the plants have enough chance to benefit from the shallow water table and the applied nutrients after irrigation (over drainage).

Egypt's major challenge is to close the rapidly growing gap between the limited water supply and the increasing water demands by various economic sectors. Agriculture sector alone utilizes about 76 percent of Egypt's fresh water resources. Policies, strategies and measures aiming to increase water efficiency through improved irrigation and drainage systems have been implemented with the objective to save irrigation water and increase water productivity.

This research aims to develop a decision support tool to evaluate the effects of controlled drainage -the system which physically restricts drainage water volumes through controlling the outlet of the subsurface drains- associated with irrigation scheduling on; applied irrigation water volumes, soil salinity and crop yield to determine the best promising measures that increase water productivity. Actual field measurements have been collected for conventional and controlled drainage systems during the growing seasons 2015 and 2016 in El-Baradi area in Western Nile Delta. The field data were used to setup and validate the DRAINMOD-S field-scale simulation model. The validated

model was used as a tool to simulate three drainage systems; free subsurface drains (FD) at depth of 1.2 m, controlled drainage system with changeable depths (CDch) at 0.8, 1.00, and 1.20 m depending on the crop stage, controlled drainage system (CD0.8) at fixed depth of 0.8 m. Short-term and long-term simulations runs have been carried out for wheat and maize crops to predict the effects of stresses caused by extreme soil water conditions (wet stress), soil water dry stress, and salinity on crop yields. The Model was used also to predict the effect of changing control depth, control period and irrigation schedule on crop yield and soil salinity, where 2 irrigation strategies were used for 9 years simulation period combined with both conventional and controlled drainage systems.

The simulation results showed that, the shallow groundwater resulting from using controlled Drainage (CD) eliminates crop water stress under water shortage condition. Controlled drainage system increases the average relative yield for maize crop by 6.0 % compared to free drainage system, even with 14% reduction in irrigation water volumes. Using evenly irrigation gifts (irrigation strategy 2) with a reduction of 14% in applied irrigation water; increase the relative yield of wheat by 2.0% and 9.4 % in conventional and controlled drainage systems respectively compared to traditional irrigation strategy (irrigation strategy 1). While the average relative yield for the summer crop (maize) has been reduced by 12.6% in controlled drainage system compared to free drainage system when using irrigation strategy 2. This loss yield was attributed mainly to salinity stress.

Key words; Subsurface drainage, controlled drainage, DRIANMOD-S, irrigation scheduling, crop yield

Table of Contents

CURRICULUM VITAE	IV
ACKNOWLEDGEMENTS	V
ABSTRACT	VI
TABLE OF CONTENTS	VIII
LIST OF TABLE	XII
TABLE OF FIGURE	XIV
LIST OF ABBREVIATIONS	XVII
CHAPTER (1)INTRODUCTION	1
1.2 PROBLEM STATEMENT	3
1.3 RESEARCH OBJECTIVE	3
1.4 RESEARCH METHODOLOGY	4
1.5 ORGANIZATION OF THE RESEARCH	6
CHAPTER TWO	8
LITERATURE REVIEW	8
2.1 DEVELOPMENT OF IRRIGATION POLICIES IN EGYPT	8
2.2 NATIONAL WATER BALANCE	12
2.3 IRRIGATION NETWORK	13
2.3.1 Types of Irrigation Systems in Egypt	14
2.3.2 Challenges Facing Traditional Irrigation System	16
2.4 SOIL-WATER-PLANT RELATIONSHIPS	17
2.4.1 The Matric Potential of Soil-Water	19
2.4.2 The Soil-Water Characteristic Curve	20
2.5 EFFECT OF SOIL SALINITY ON CROP YIELD	24
2.5.1 Response of Wheat and Maize Crops to Salinity	26
2.6 AGRICULTURAL DRAINAGE IN EGYPT	26
2.7 CONVENTIONAL AND CONTROLLED DRAINAGE SYSTEMS	29
2.7.1 Conventional Subsurface Drainage Systems	30
2.7.2 Controlled Drainage System	32
2.8 MODELING OF DRAINAGE SYSTEMS	38

CHAPTER THREE	41
DECISION SUPPORT TOOL AND MODEL SELECTION	41
3.1 DECISION SUPPORT TOOL	41
3.1.1 Simulation model selection	41
3.1.2 The Screening Tool	44
3.2 DRAINMOD MODEL DESCRIPTION	46
3.3 DRAINMOD MODEL INPUT FILES	48
3.3.1 Soil data	48
3.3.2 Weather Data	49
3.3.3 Crop data	50
3.3.6 DRAINMOD-S	51
3.4 MODEL OBJECTIVE FUNCTION	51
3.4.1 Sum of Excess Water (S E W)	51
3.4.2 Dry Days	52
3.4.3 Relative Yield	52
3.4.4 Irrigation Volume	52
CHAPTER FOUR	54
SITE DESCRIPTION AND DATA COLLECTION	54
4.1 SITE DESCRIPTION	54
4.1.1 EL-Baradi pilot Area	55
4.2 Materials and Method	59
4.2.1 Field Data Collection	61
4.2.1.1 Irrigation Water Volumes	61
4.2.1.2 Water Table Depth	62
4.2.1.3 Drainage Discharge	63
4.2.1.4 Soil Salinity	63
4.2.1.5 Crop Yield	63
4.2.2 Model Data Collection	64
4.2.2.1 Weather Data Acquisition	64
4.2.2.2 Soil Data	65
4.2.2.3 Drainage System Design Criteria	66

CHAPTER FIVE67
MODEL VALIDATION AND SIMULATION67
5.1 MODEL CALIBRATION67
5.2 Model Verification
5.2.1 DRAINMOD-S Model Setup and Verification70
5.3 SHORT-TERM SIMULATION74
5.3.1 Simulation of Conventional Drainage System Scenario
5.3.2 Simulation of Changeable Controlled Drainage System
5.3.3 Simulation of Controlled Drainage System at Depth 0.8 M
5.4 Long-Term Simulation
5.4.1 Long-Term Simulation of Conventional Drainage System81
5.4.2 Long-Term Simulation of Changeable Controlled Drainage System83
5.4.3 Long-Term Simulation of Controlled Drainage System at Depth 0.8m below soil
surface86
5.5 THE IMPACT OF CHANGING IRRIGATION SCHEDULING ON THE RELATIVE YIELD88
5.5.1 Simulation of Conventional Drainage System with Irrigation Strategy (IS2) 89
5.5.2 SIMULATION OF CHANGEABLE CONTROLLED DRAINAGE SYSTEM ASSOCIATED
WITH IRRIGATION STRATEGY (IS2)92
5.6 The Impact of Changing Control Depth and Control Periods on
RELATIVE YIELD94
5.7 SALINITY CONTROL AND LEACHING REQUIREMENTS
CHAPTER SIX
RESULTS AND DISCUSSION103
6.1 FIELD RESULTS 103
6.2 SHORT-TERM SIMULATION RESULTS
6.2.1 Water Table Depth
6.2.2 Drainage Discharge
6.2.3 Water Productivity
6.2.4 Soil Salinity
6.3 LONG-TERM PREDICTION
6.3.1 Long-Term Simulation with Traditional Irrigation Schedule (IS1)109
6.3.2 Impact of Changing Irrigation Scheduling on the Relative yield110
Evenly Irrigation Schedule (IS2)110

6.4 THE RESULTS OF THE DECISION SUPPORT TOOL	112
CHAPTER SEVEN	114
CONCLUSIONS AND RECOMMENDATIONS	114
7.1 Conclusions	114
7.2 RECOMMENDATIONS FOR FURTHER RESEARCHES	117
REFERENCES	118

LIST OF TABLE

Table 2-1 Water Balance Summary for Baseline Conditions in 2017	12
Table 2-2 typical cropping pattern in Egypt	14
Table 2-3 comparison between different irrigation methods.	16
Table 4-1 Avarge long-term climatological data of EL – Mahmoudia station	56
Table 4-2 Served area, crops distribution and observation wells of collector No. 1	
growing season (2015-2016)	59
Table 4-3 operating rules of controlled drainage system	60
Table 4-4 Average measured allocated water per feddan per season	62
Table 4-5 soil texture, bulk density, and saturated hydraulic parameters of different	
soil layers in El-Baradi area	66
Table 4-6 drainage system parameters in used in DRAINMOD	66
Table 5-1 Overall relative yield for wheat and maize crop in conventional drainage	
traetment	75
Table 5-2 Overall relative yield for wheat and maize crop in changeable controlled	
drainage traetment	77
Table 5-3 overall relative yield for wheat and maize crops in controlled drainage at	
deoth 0.8 m traetment	79
Table 5-4 average relative yield for wheat crop during the simulation period	82
Table 5-5 average relative yield for maize crop during the simulation period	83
Table 5-6 average relative yield for wheat crop under changeable drainage depth	85
Table 5-7 the average relative yield for maize crop	85
Table 5-8 the average relative yield for wheat crop	87
Table 5-9 the average relative yield for maize crop	87
Table 5-10 the average relative yield for whaet crop crop under conventional drainge	
and irrigation strategy IS2.	90
Table 5-11 the average relative yield for maize crop under conventional drainge and	
irrigation strategy IS2.	91
Table 5-12 average relative yield for wheat crop during the simulation period under	
controlled drainge and irrigation strategy IS2.	93
Table 5-13 average relative yield for maize crop during the simulation period under	
controlled drainge and irrigation strategy IS2.	93