

Shear Wave Elastography in Assessment of Liver Fibrosis

Thesis

Submitted for partial fulfillment of Master Degree in in Radiodiagnosis

By

Alaa Kanaan Abdulateef

M.B.B.Ch., College of medicine/Baghdad University/Iraq

Under supervision of

Prof. Dr. Sherif Abou Gamrah

Professor of Diagnostic Radiology Faculty of Medicine - Ain Shams University

Dr.Samar Ramzy Ragheb

Lecturer of Diagnostic Radiology Faculty of Medicine - Ain Shams University

Dr. Ayman Hassan Hassan Rezk

Fellow of Diagnostic Radiology National Hepatology and tropical medicine research institute

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

First to all, I would like to thank ALLAH the almighty, for having made every thinking possible by giving me strength and courage to do this work.

It is a pleasure to me to express my deepest gratitude to Prof. Dr. Sherif Abou Gamrah Professor of Radiodiagnosis, Faculty of Medicine, Ain shams University, for his continuous scientific guidance, precious time and efforts.

Also, I'm deeply indebted and grateful to Dr.Samar Ramzy Ragheb, lecturer of Radiodiagnosis, Faculty of Medicine, Ain shams University, for her kind help, guidance and follow up throughout the whole work.

Also, thanks to Dr. Ayman Hassan Hassan Rezk Fellow of Radiology at National Hepatology and tropical medicine research institute, for his supervision, guidance and constant encouragement.

🖎 Alaa Kanaan Abdulateef

This work is dedicated to:

My family; my father, my mother, my sister and my brother.

My lovely husband and my children (Ghaith and Taha).

Thanks to their love, encouragement, continuous help and support, I was always inspired to complete this work.

List of Contents

Title Page No.
List of Abbreviations i
List of Tablesiv
List of Figuresv
Introduction
Aim of the Work
Review of Literature
Chapter (1): Anatomy of the Liver4
Chapter (2): Normal Ultrasound Appearance of Liver 24
Chapter (3): Pathology of Liver Fibrosis
Chapter (4): Non Invasive Assessment of Liver Fibrosis 64
Patients and Methods
Results
Illustrative Cases
Discussion
Summary
Conclusion
References
Arabic Summary

List of Abbreviations

Abbr.	Full term
1D	Mono Dimensions
2D	Two Dimensions
AICD	An Implantable Cardioverter Defibrillator
AILDs	Autoimmune Liver Diseases
ALD	Alcoholic Liver Disease
ALT	Alanine Transaminase
ARFI	Acoustic Radiation Force Impulse
AST	Aspartate Aminotransferase
AUC	Area Under Curve
AUROC	Area under ROC curve
BMI	Body mass index
CBD	Common Bile Duct
CLD	Chronic Liver Disease
EASL	European Association for the Study of the Liver
EGD	Esophago gastro Dudenoscopy
EGVB	Esophageal and Gastric Variceal Bleeding
EV	Esophageal avarices
FLLs	Focal Liver Lesions
FNH	Focal Nodular Hyperplasia
HA	Hepatic Artery
HB	Hemoglobin
HBV	Hepatitis B Virus
HCC	Hepatocellular Carcinoma
HCV	Hepatitis A Virus

i

List of Abbreviations

HIV Human Immunodeficiency VirusesHPVG Hepatic Venous Pressure Gradient

HV Hepatic Vein

HZ Hertz

INR International Normalizd Ratio

IQR Interquartile Range

IQR/M Interquartile Range / median

IVC Inferior Vena Cava

KPa Kilopascal

LHA Left Hepatic Artery

LN Lymph NodeLS Liver Stiffness

LSE Liver Stiffness Evaluation
LSM Liver Stiffness measurement

LT Liver Transplantation

MHz Mega hertz

MRE Magnetic Resonance ElastographyNAFLD Nonalcoholic Fatty Liver Disease

NASH Nonalcoholic SteatohepatitisNPV Negative predictive value

PCR Polymerase Chain Reaction

PH Portal Hypertension

PPV Positive predictive value

PV Portal Vein

RHA Right Hepatic Artery

RNA Ribonucleic Acid

ROC Receiver operator characteristic curve

List of Abbreviations

ROI Region Of Interest

RTE Real-Time Elastography

SCD Sub Cutaneous Density

SD Standard deviation.

SFL Simple Fatty Liver

SMA Superior Mesenteric Artery

SWE Shear-Wave Elastography

TE Transient Elastography

US Ultrasound

USSS Ultrasonographic scoring system

List of Tables

Table No.	Title Page No.
Table (1):	Remarkable features on Diaphramatic and visceral surfaces of the liver
Table (2):	Factors contributing to fibrosis progression in chronic hepatitis C
Table (3):	Metavir scoring system show liver fibrosis stages and Activity grades
Table (4):	Findings for the ultrasound features of the edge, surface and parenchymal texture of the liver41
Table (5):	Child-Pugh classification
Table (6):	Salient features of technical aspects of liver elastography
	modalities49
Table (7):	Clinical indications for TE56
Table (8):	Conditions that affect accuracy of TE57
Table (9):	Precautions and techniques of 2D-SWE60
Table (10):	Demographic data of the studied patients76
Table (11):	Laboratory investigation of the studied patients78
Table (12):	US finding of the studied patients:79
Table (13):	Liver US among the studied patients:80
Table (14):	Liver fibrosis stage number and percentage by TE
	(Fibroscan) and SWE among the studied group82
Table (15):	Correlation and agreement between SWE and TE for
	grading of hepatic fibrosis in studied group shows highly
	significant with P-value p<0.00185
Table (16):	Correlation between TE and SWE among all the studied
	patients86
Table (17):	Diagnostic accuracy of SWE in detection of TE results87
Table (18):	Receiver-operating characteristic (ROC) analysis for
	discrimination between F0-F1 and F2-F4 CHC patients
	using liver stiffness measured with SWE88
Table (19):	Relation of SWE with demographic data and
	anthropometric measures of the studied patients88

List of Figures

Figure No.	Title Page No.
Figure (1):	Liver and gallbladder, anterior view4
Figure (2):	Diaphragmatic surface of liver6
Figure (3):	Visceral surface of liver
Figure (4):	Left, Right, Caudate and Quadrate lobe of the liver9
Figure (5):	The content of porta hepatis11
Figure (6):	Segmental anatomy according to couinaud classification $\ldots 12$
Figure (7):	Clockwise numbering of liver segments
Figure (8):	Transverse image through the superior liver segments, that are divided by the right and middle hepatic veins and the falciform ligament
Figure (9):	At this level the left portal vein divides the left lobe into the superior segments (II and IVa) and the inferior segments (III and IVb)
Figure (10):	At this level the right portal vein divides the right lobe of the liver into superior segments (VII and VIII) and the inferior segments (V and VI)15
Figure (11):	At the level of the splenic vein, which is below the level of the right portal vein, only the inferior segments are visible15
Figure (12):	Normal portal venous circulation
Figure (13):	Common bile duct
Figure (14):	Liver ultrasound using convex probe on which the shearwave is implemented25
Figure (15):	Normal appearance of the liver at US27
Figure (16):	Transverse view of liver showing ligamentum venosum anterior to caudate lobe
Figure (17):	Main portal vein enters liver at hilum29
Figure (18):	Three main Hepatic veins, left, middle and right can be traced into the IVC30
Figure (19):	Normal waveform obtained from portal vein32

List of Figures

Figure (20):	Hepatic a. flow demonstrates a low-resistance waveform	.32
Figure (21):	Normal sonographic appearance of common bile duct	.33
Figure (22):	Diagram of the comparison of the various staging systems for liver fibrosis	.39
Figure (23):	The ultrasound features of the liver edge	.42
Figure (24):	The ultrasound features of the liver surface	.42
Figure (25):	The ultrasound features of the liver parenchymal texture	.43
Figure (26):	Deformation of a soft solid under an external stress	.48
Figure (27):	Transient Elastography (Fibroscan)	.50
Figure (28):	Examples of liver stiffness measurements	.52
Figure (29):	An example of the TE technique	.54
Figure (30):	Liver stifness cut-offs in chronic liver diseases	.55
Figure (31):	Shear Wave elastography	.59
Figure (32):	Normal value of liver stiffness show by Philips share wave Elastography correlated with metavir score	.62
Figure (33):	Shear wave elastography could be displayed in color maps, developing real-time color-coded elasticity imaging	.63
Figure (34):	Shear-Wave elastography machine	.71
Figure (35):	Convex Prob (C5-1) which is the same prob used in abdominal U/S also used for SWE	.72
Figure (36):	Average stiffness by shearwave elastography.	.74
Figure (37):	Sex distribution among the studied cases were 13 males (43.3%) and were 17 females (56.7%)	.77
Figure (38):	Spleen size among the studied patients.	.79
Figure (39):	Ascites among the studied patients	.80
Figure (40):	Liver surface among the studied patients.	.81
Figure (41):	Liver texture among the studied patients	.81
Figure (42):	Grading of hepatic fibrosis using TE among the studied group.	.83
Figure (43):	Percentage of non-significant liver fibrosis (F0-F1) and significant liver fibrosis (F2-F4) among studied group by TE	83

List of Figures

Figure (44):	Grading and percentage of hepatic fibrosis stages using SWE among the studied group.	.84
Figure (45):	Percentage of non-significant liver fibrosis (F0-F1) and significant liver fibrosis (F2-F4) among studied group by SWE	.84
Figure (46):	The percentage of hepatic fibrosis grades in studied patients by SWE in comparative to TE	.85
Figure (47):	Correlation between TE and SWE among all the studied patients	.86
Figure (48):	Diagnostic accuracy of SWE in detection of TE results	.87

ABSTRACT

Background: Liver fibrosis is major medical issues in patients with chronic hepatitis C (CHC). It may lead to cirrhosis, hepatocellular carcinoma (HCC) and liver-related death. Therefore, assessing the degree of fibrosis in patients with chronic liver diseases, especially before the advanced stage, is clinically important to allow early care and prevent fatal liver disease.

Objective: The plan was to do shear-wave Elastography after fibroscan (TE) in order to assess the stiffness of the liver, detect the changes occurred in hepatitis C patients and measure diagnostic accuracy of 2D-SWE by using TE as reference standard.

Methods: A cross-section study included 30 persons with positive hepatitis C. They were referred to Radiology department at National Hepatology and tropical medicine research institute.

Results: Our study included (30) patients who have hepatitis C positive, their ages ranged from (18) years old to (60) years old with mean \pm SD of 52.97 ± 9.43 . They were 17 females (56.7%) and 13 males (43.3%). Different liver fibrosis stages were observed by 2D-SWE as following: (F0) 4 patients (13.3%), (F1) 4 patients (13.3%), (F2) 9 patients (30.0%), (F3) 10 patients (33.3%), (F4) 3 patients (10.0%). While TE (fibroscan) shows (F0) 6 (20.0%), (F1) 3 patients (10.0%), (F2) 7 patients (23.3%), (F3) 8 patients (26.7%) (F4) 6 patients (20.0%). Our study showed that the relation between TE (fibroscan) and SWE finding had positive correlation of most patients with liver fibrosis with (p-value = 0.006 and r-value 0.487). Because the important of significant fibrosis for initiate antiviral protocol therapy, 30 patients classified into F0-F1 (non-significant liver fibrosis) versus F2-F4 (significant liver fibrosis). Our study show significant discrimination was found between no/mild fibrosis (F0-F1) and significant fibrosis (F2-F4), shows the sensitivity of SWE in detection of significant fibrosis results is 95.2% and the specificity is 77.8%, PPV 90.91%, NPV 87.5% and the accuracy 90.0% with cutoff value >5.7kPa.

Conclusion: SD-SWE is accurate in prediction significant fibrosis (\geq F2), Thus is expected to overcome the limitation of TE as a reliable method to assess fibrosis induce by hepatitis.

Keywords: Shear wave elastography, Liver fibrosis, Chronic Hepatitis C, Fibroscan (TE).

INTRODUCTION

hronic liver disease is a substantial worldwide problem. Its major consequence is increasing deposition of fibrous tissue within the liver, leading to the development of cirrhosis with its consequences, portal hypertension, hepatic insufficiency, and hepatocellular carcinoma (HCC) As fibrosis progresses, there is increasing portal hypertension, loss of liver function, and higher risk of HCC (*Regev et al.*, 2002).

The stage of liver fibrosis is important to determine prognosis and surveillance and to prioritize for treatment and potential for reversibility (*Marcellin et al.*, 2013). The process of fibrosis is dynamic, and studies have shown that a regression of fibrosis is possible with treatment of the underlying condition (eg, antiviral therapy in viral hepatitis and immunosuppression in autoimmune hepatitis) (*Martinez et al.*, 2012).

Previously, the only method of staging the degree of fibrosis was liver biopsy. Liver biopsy is considered the reference standard for fibrosis assessment and stage classification and also allows grading of steatosis, necrosis, and inflammatory activity (*Seeff et al., 2010*). However, biopsy is invasive, with potential complications that can be severe in up to 1% of cases (*Stotland and Lichtenstein, 1996*).

Further, tissue obtained via biopsy represents roughly only 1/50 000 of the liver volume, which may result in is associated with sampling error and considerable interobserver variability microscopic at evaluation, Therefore, noninvasive methods for liver fibrosis assessment intense field of have been research, including elastographic methods (Goodman, 2007).

Elastography is a technique which has the ability to estimate hepatic fibrosis based on the assessment of tissue stiffness. Among the available armamentarium, transient elastography (TE), was the earliest and most extensively used (*Ferraioli et al.*, 2015).

TE is difficult to perform in patients with obesity, ascites, shrunken liver, or those with narrow intercostal spaces (*Tatsumi et al.*, 2007).

Further technological advances led to the emergence of a novel technique of Shear wave elastography (SWE) (*Friedrich-Rust et al., 2007*). This uses information of acoustically generated shear wave propagation speed through the liver to provide qualitative (stiffness-based color-coded maps) and quantitative assessment (average value in the region of interest in terms of the Young modulus, kilopascals) of liver fibrosis (*Li et al., 2016*).