

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

SIMULATION AND TECHNO-ECONOMIC EVALUATION OF BIO-LUBRICANTS PRODUCTION PROCESS FROM WASTE COOKING OIL

By

Reda Zein Korany Hussein

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

in **Chemical Engineering**

SIMULATION AND TECHNO-ECONOMIC EVALUATION OF BIO-LUBRICANTS PRODUCTION PROCESS FROM WASTE COOKING OIL

By Reda Zein Korany Hussein

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Chemical Engineering

Under the Supervision of

Prof. Shakinaz T. El Sheltawy	Prof. Mai M. Kamal
Professor of Chemical Engineering	Professor of Chemical Engineering
Chemical Engineering Department	Chemical Engineering Department
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University
Prof. Nahed K	. Attia
Professor of Chem	ical Engineering
Pilot Plant D	Department

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

National Research Center

SIMULATION AND TECHNO-ECONOMIC EVALUATION OF BIO-LUBRICANTS PRODUCTION PROCESS FROM WASTE COOKING OIL

By **Reda Zein Korany Hussein**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Chemical Engineering

Approved by the	
Examining Commi	ttee
Prof. Shakinaz T. El	Sheltawy, Thesis Main Advisor
Prof Ehah Foad Ah	adir, Internal Examiner
i i oi. Liiab i oaa 11b	udii, iiitti iidi Examiitti

Prof. Sanaa Abdel Halim Mohamed, External Examiner

Researcher Professor of Biomass Energy at Chemical Engineering and Pilot Plant Department, National Research Center

Engineer's Name: Reda Zein Korany Hussein

Date of Birth: 13/04/1988 **Nationality:** Egyptian

E-mail: reda.zein@eng1.cu.edu.eg

Phone: 01229260031

Address: 55th Shaheen El-Aggouza, Giza

Registration Date: 1/3/2015 **Awarding Date:** 1/3/2021

Degree: Doctor of Philosophy **Department:** Chemical Engineering

Supervisors:

Prof. Shakinaz T. El Sheltawy

Prof. Mai M. Kamal Prof. Nahed K. Attia

(Professor at National Research Center)

Examiners:

Prof. Sanaa Abdel Halim Mohamed (External examiner) (Researcher Professor at National Research Center)

Prof. Ehab Foad Abadir (Internal examiner)

Prof. Shakinaz T. El Sheltawy (Thesis main advisor)

Title of Thesis:

SIMULATION AND TECHNO-ECONOMIC EVALUATION OF BIO-LUBRICANTS PRODUCTION PROCESS FROM WASTE COOKING OIL

Key Words:

Bio-lubricant; Waste cooking oil (WCO); Dioleoyl ethylene glycol; Eco-friendly; Economic feasibility

Summary:

The present work aims to study the production of bio-lubricants from waste cooking oil. In addition, economic feasibility of bio-lubricants production process in Egypt is presented.

The bio-lubricant produced in the present work is a potential biodegradable lubricant that could be used in industrial applications. Its properties were compared to different ISO viscosity grade lubricants and it was found that it complies with ISO VG68 specifications with better low temperature applicability.

An economic assessment for the process application in Egypt was also performed based on the results of process simulations and design calculations. The process showed positive after tax rate of return (ROI %) and a very low payback period (0.24 year) with bio-lubricant selling price equal to the petroleum lubricant. In addition, it was found that the bio-lubricant could be sold with a challenging price and the process would still be profitable from the payback period point of view.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Reda Zein Korany Hussein Date:.../2021

Signature:

Dedication

I dedicate my thesis to my parents may God bless their souls; my husband "Haytham Ragheb"; and to my sons "Zein" and "Youssef".

Acknowledgments

I want to thank God for all his blessings and for giving me the power and time to complete this work.

Special thanks to my dear professors Prof. Shakinaz T. El Sheltawy, Prof. Mai M. Kamal and Prof. Nahed K. Attia for supervising this work. They were always beside me to give me continuous help and support throughout this research despite their busy schedule. I'm really lucky for working with them in this research.

Again particular thanks shall go to Prof. Nahed K. Attia, for her guidance in setting the work plan, continuous supervision for the flow of work, full guidance in experimental work and clear-cut decisions when needed. She was always there when ever I needed help. I have learnt a lot from her on both technical and personal levels despite her very busy schedule.

I would like to thank all my professors and colleagues in Chemical Engineering department. While, special thanks goes to Prof. Magdi F. Abadir and Prof. Ehab F. Abadir for their help and technical guidance. Also, many thanks to my dear colleagues and friends; Mohamed Ismail, Mai Osama, Nourhan Hisham, Shady Hassan, , Samer Hany Dr. Ayat, Dr. Amr Refay, Dr. Ahmed Wafiq and Dr. Ahmed Refaat for their continuous support.

Finally, I want to show my respect, appreciation, love and gratitude to my great parents God bless their soul and to my husband Haytham Ragheb for always being there for me.

Table of Contents

Acknowledgments	i
Dedication	i
Table of Contents	iv
List of Tables	vii
List of Figures	viii
Nomenclature	X
Abstract	xiv
Chapter 1 : Introduction	1
1.1. Organization of the Thesis	3
Chapter 2 -: Literature Review	
2.1. Introduction	4
2.2. Lubricants and their Functions	
2.3. Bio-Lubricants	
2.4. Different Bio-Lubricants and Their Uses	
2.5. Bio-Lubricants Feedstock	9
2.5.1. Production of Bio-lubricants from Edible Vegetable oils	9
2.5.1.1. Virgin Vegetable Oil Feedstocks	9
2.5.1.2. Waste Cooking Oil (WCO) or Frying Oil Feedstocks	14
2.5.2. Production of Bio-lubricant from Non-Edible Vegetable Oils	21
2.5.2.1. Castrol as Feedstock of Bio-lubricants	21
2.5.2.2. Jojoba Oil as Bio-lubricant	23
2.5.2.3. Jatropha Oil as Feedstock of Bio-lubricants	23
2.5.3. Production of Bio-lubricant from Biodiesel	26
2.6. Why Waste Cooking Oil was Chosen as A feedstock	28
2.7. Chapter Summary	
Chapter 3: Experimental Work	
3.1. Introduction	29
3.2. Materials	
3.3. Apparatuses Used	
3.4. Equipment Used	

3.5. Experimental Work Methodology	30
3.5.1. Waste Cooking Oil Characterization	31
3.5.2. Waste Cooking Oil Heating	32
3.5.3. Oil Transesterification (Biodiesel Synthesis)	32
3.5.4. Settling	32
3.5.5. Biodiesel Characterization	32
3.5.6. Biodiesel Transesterification (Bio-lubricant Synthesis)	32
3.5.7. Filtration	34
3.5.8. Distillation	34
3.5.9. Bio-lubricant Characterization	34
3.5.9.1. Density	35
3.5.9.2. Viscosity Index (VI)	35
3.5.9.3. Pour Point	35
3.5.9.4. Flash Point	35
3.5.9.5. Iodine Value	36
3.5.9.6. Acid value	36
3.5.9.7. Fourier Transform Infrared Spectroscopy (FTIR)	36
3.5.9.8. Thermogravimetric Analysis (TGA)	36
Chapter 4: Process Simulation	38
	29
4.1 Introduction.	36
4.1 Introduction	
	38
4.2. Process Simulation	38 39
4.2. Process Simulation	38 39 40
4.2.1. Waste Cooking Oil Preheating	38 39 40
4.2.1. Waste Cooking Oil Preheating	38 39 40 41
4.2.1. Waste Cooking Oil Preheating 4.2.2. Process Step (1) Biodiesel Production 4.2.3. Process Step (2) Bio-lubricant Production 4.2.3.1. Biodiesel Transesterification	3839404141
4.2.1. Waste Cooking Oil Preheating 4.2.2. Process Step (1) Biodiesel Production 4.2.3. Process Step (2) Bio-lubricant Production 4.2.3.1. Biodiesel Transesterification 4.2.3.2 Bio-lubricant Purification	3840414141
4.2.1. Waste Cooking Oil Preheating	3840414143
4.2.1. Waste Cooking Oil Preheating 4.2.2. Process Step (1) Biodiesel Production 4.2.3. Process Step (2) Bio-lubricant Production 4.2.3.1. Biodiesel Transesterification 4.2.3.2 Bio-lubricant Purification Chapter 5: Design Calculations 5.1. Introduction	383940414143
4.2.1. Waste Cooking Oil Preheating 4.2.2. Process Step (1) Biodiesel Production 4.2.3. Process Step (2) Bio-lubricant Production 4.2.3.1. Biodiesel Transesterification 4.2.3.2 Bio-lubricant Purification Chapter 5: Design Calculations 5.1. Introduction 5.2. Process Reactors	384041414343

5.3. Distillation Towers	47
5.4. Heat Exchangers	47
5.5. Pumps	47
5.6. Separators	48
5.6.1. Gravity Separator	48
5.6.2. Sedimentation Centrifuge	48
5.6.3. Filter Press	51
Chapter 6: Economic Profitability	53
6.1. Introduction	53
6.2. Bare Module Cost of Equipment	
6.3. Total Capital Investment	
6.4. The Cost of Manufacturing	56
6.5. Process Profitability Assessment	57
6.5.1. Payback Period (PBP)	58
6.5.2. Rate of Return on Investment (ROI)	58
Chapter 7: Results and Discussion	59
7.1. Introduction	59
7.2. Experimental Work Results	59
7.2.1. FAMEs Characteristics	59
7.2.2. Optimum Reaction Conditions	60
7.2.3. Bio-lubricants Characteristics	63
7.2.3.1. Physicochemical Properties	63
7.2.3.2. Functional Groups	63
7.2.3.3. Thermal Stability	64
7.3. Simulation Results	65
7.4. Equipment Design Results	71
7.5. Economic Assessment Results	73
7.5.1. Total Capital Investment	73
7.5.2. Cost of Manufacturing	76
Conclusion	81
Doforoneos	82

List of Tables

Table 2.1: Comparison between petroleum lubricants and bio-lubricants	. Error!
Bookmark not defined.	
Table 2.2: Different vegetable oils and their applications	8
Table 2.3: Comparsion between heterogeneous and homogeneous catalysts for	
transesterification reaction	
Table 2.4: Summery of production of bio-lubricants from WCO	19
Table 2.5: Reaction Conditions for Jatropha bio-lubricant production	
Table 3.1: Characteristics of used vegetable oils	31
Table 5.1: Values for the dimensionless constant (a) for use in equation (12)	46
Table 5.2: Physical properties of mixture liquid and solid	48
Table 5.3: Sedimentation disc centrifuge design parameters as a function of feed	l
capacity	50
Table 5.4: Filter press design parameters	51
Table 6.1: Prices of raw materials, catalysts, waste treatment and products used	in the
process	54
Table 6.2: Calculation of the number of operators needed to rotate on each singl	e job 56
Table 6.3: Multiplication factors for estimating cost of manufacturing	57
Table 7.1: Methyl esters fatty acid composition of the produced biodiesel	59
Table 7.2: Physical properties of the produced biodiesel and the corresponding s	standard
values	60
Table 7.3: ISO specifications of different viscosity grades and properties of the	
produced bio-lubricant	
Table 7.4: I- Material balance data from Aspen HYSYS for the process	67
Table 7.5: II- Material balance data from Aspen HYSYS for the process	68
Table 7.6: III- Material balance data from Aspen HYSYS for the process	
Table 7.7: IV- Material balance data from Aspen HYSYS for the process	70
Table 7.8: Bio-lubricant production process equipment design data I	
Table 7.9: Bio-lubricant production process equipment design data II	72
Table 7.10: Total capital investment for the process	74
Table 7.11: Process pumps and their function, power and cost	75
Table 7.12: Process heat exchange equipment and their heat transfer area and co	st75
Table 7.13: Bare module factor of some equipment	75
Table 7.14: Cost of operating labor for the process	76
Table 7.15: Cost of manufacturing for the process	77
Table 7.16: Profitability checks calculation (After tax rate of return and payback	
period)	
Table 7.17: Alternative prices of bio-lubricant and their effect on payback period	d and
ROI%	80

List of Figures

Figure 1.1: Egypt Crude Oil Production and Consumption by Year	15
Figure 2.1: Biodegradation cycle of vegetable oils used as bio-lubricants	
Figure 2.2: Epoxidation reaction to produce a bio-lubricant	
Figure 2.3: A general structure of a triglyceride ester atom of vegetable oil	
Figure 2.4: Reaction steps to produce di-oleate palm oil and oleate-ether palm oil l	
lubricants	
Figure 2.5: Experimental setup for the production of a bio-lubricant from	12
transesterification of palm oil and trimethyllol propane (TMP)	14
Figure 2.6: Block diagram of the two step process for the production of octyl ester	
Figure 2.7: Production of biolubricant from WCO according to Wang et al. (2014)	
Figure 2.8: Block diagram for the production of epoxied WCOME	
Figure 2.9: Schematic diagram for the three reaction steps of converting WCO to	1
epoxidized branched esters	17
Figure 2.10: Block flow diagram for TFATE preparation using K ₂ CO ₃ catalyst	
Figure 2.11: Different production routes of bio-lubricants from WCO	
Figure 2.12: Ricinoleic acid as main component of castor oil	
Figure 2.13: The three steps followed to produce ethyl hexyl ester of castor oil bio	
lubricant	
Figure 2.14: Jatropha bio-lubricant production steps	
Figure 2.15: Transesterification reaction to form Jatropha bio-lubricant	
Figure 2.16: Esterification of fatty acids of Jatropha oil with TMP	
Figure 2.17: Trimethylol propane ester or polyol ester bio-lubricant	
Figure 2.18: Reaction schemes for the production of bio-lubricant from biodiesel	
Figure 3.1: Experimental work methodology	
Figure 3.2: Bio-lubricant synthesis reaction.	
Figure 3.3: Experimental setup for biodiesel transesterification to produce the biolubricant.	
Figure 4.1: The buildup steps of any process simulation	
Figure 4.2: Inlet waste cooking oil preheating	
Figure 4.3: Biodiesel production using homogeneous KOH catalyst on Aspen HYS	
Figure 4.4: Bio-lubricant production process Model on Aspen HYSYS	
Figure 5.1: Power Characteristics of some stirrer types for baffled tanks	
Figure 5.2: Solid-Liquid different separation techniques	
Figure 5.3: Performance of sedimentation centrifuge using sigma theory	
Figure 7.1: Effect of reaction temperature on conversion at 3.5 reactants molar rational FAME, EC. 1.2 and 100 min.	
FAME: EG, 1.2 catalyst % (w/w) and 90 min.	
Figure 7.2: Effect of reactants molar ratio FAME: EG on reaction conversion at 13	
C, 1.2 catalyst % (w/w) and 90 min.	
Figure 7.3: Effect of changes in catalyst % (w/w) on reaction conversion at 130 °C	
FAME: EG molar ratio and 90 min.	
Figure 7.4: Effect of reaction time on reaction conversion at 130 °C, 1.2 catalyst %	
(w/w) and 3.5 FAME: EG molar ratio	
Figure 7.5: FTIR spectra for the produced bio-lubricant	
Figure 7.6: TGA Thermograph for the produced bio-lubricant under helium atmos	
	62