

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

Efficacy of Nebulized Colistin-Based Monotherapy versus Intravenous Administration of Colistin in Treatment of Ventilator Associated Pneumonia Caused by Multidrug Resistant Gram-Negative Bacteria

Thesis

Submitted for Partial Fulfillment of Master degree in of Anesthesia

Presented by

Abdelaziz Abdelaal Abdelaziz Abdelaal

MBChB Faculty of Medicine, Ain Shams University

Under supervision of

Prof. Dr. Sherif Wadie Nashed Sergious

Professor of Anesthesia, Intensive Care Unit and Pain management Faculty of Medicine, Ain Shams University

Dr. Mona Ahmed Abdelmotelb Ammar

Assistant professor of Anesthesia, Intensive Care Unit and Pain management Faculty of Medicine, Ain Shams University

Dr. Amr Ahmed Ali Kasem

Lecturer of Anesthesia, Intensive Care unit and Pain management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Sherif Wadie Mashed Sergious**, Professor of Anesthesia, Intensive Care Unit and Pain management, Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Mona Ahmed**Abdelmotelb Ammar, Assistant professor of Anesthesia, Intensive Care Unit and Pain management Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Amr Ahmed Ali Kasem**, Lecturer of Anesthesia, Intensive Care
unit and Pain management, Faculty of Medicine, Ain
Shams University, for his great help, active participation
and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Abdelaziz Abdelaal Abdelaziz Abdelaal

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
Tist of Abbreviations	
Introduction	
Aim of the Work	4
Review of Literature	
Ventilator Associated Pneumonia	5
Multi-Drug Resistant GRAM-VE Bacteria	16
Colistin	21
Patients and Methods	29
Results	36
Discussion	51
Conclusion	60
Summary	61
References	
Arabic Summary	

List of Tables

Table No	o. Title	Page No.
Table (1):	Risk factors for multidrug-resistant pathogens hospital-acquired pneumonia, healthcare-ass pneumonia (HCAP), and ventilator-ass pneumonia	sociated sociated
Table (2):	Clinical Pulmonary Infection Score	33
Table (3):	Comparison between the two studied regarding demographic data and characteristic	•
Table (4):	Comparison between the two studied regarding Clinical Pulmonary Infection (CPIS) parameters	Score
Table (5):	Comparison between the two studied regarding APACHE II score, SOFA scor Clinical Pulmonary Infection Score (CPIS)	re and
Table (6):	Comparison between clinical outcome, MV ICU stay and VAP related mortality	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Structure of colistin methanesulfonate and co	olistin 21
Figure (2):	Colistin methanesulfonate (open circles) and (filled circles) mean (±standard deviation) concentrations observed in 12 healthy volafter a single 1 h infusion of methanesulfonate 1 MIU (million international)	plasma lunteers colistin
Figure (3):	Sex distribution among the studied patients .	36
Figure (4):	Cause of ICU admission among the patients	
Figure (5):	Comparison between the two studied regarding sex of the studied patients	groups
Figure (6):	Comparison between the two studied regarding age of the studied patients	
Figure (7):	Comparison between the two studied regarding anthropometric measures of the patients	studied
Figure (8):	Comparison between the two studied regarding vital data of the studied patients	
Figure (9):	Comparison between the two studied regarding cause of admission of the patients	studied
Figure (10):	Comparison between the two studied regarding temperature	
Figure (11):	Comparison between the two studied regarding leukocytes	groups
Figure (12):	Comparison between the two studied regarding tracheal secretion	groups
Figure (13):	Comparison between the two studied regarding radiographic findings on chest X-1	0 1

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (14):	Comparison between the two studied regarding culture results	-
Figure (15):	Comparison between the two studied regarding oxygen status	
Figure (16):	Comparison between the two studied regarding patients outcome	0 1
Figure (17):	Comparison between the two studied regarding duration of MV days and ICU day	0 1
Figure (18):	Comparison between the two studied regarding nephrotoxicity and microbial erad	0 1
Figure (19):	Comparison between the two studied regarding VAP related mortality	•
Figure (20):	Comparison between the two studied regarding rate of clinical cure and improvement	clinical

List of Abbreviations

Abb.	Full term
AKI	.Acute kidney injury
	Acute physiology and chronic health evaluation
	.Bronchoalveolar lavage
	Centers for Disease Control and Prevention
<i>CF</i>	•
	. Colistin methanesulfonate
	. Clinical Pulmonary Infection Score
	. Computed tomograms
	European Centre for Disease Prevention and
	Control
<i>ELF</i>	. Epithelial lining fluid
GNB	. Gram-negative bacteria
HAP	. Hospital acquired pneumonia
HCAP	. Healthcare-associated pneumonia
	. Highly significant
<i>ICU</i>	.Intensive care unit
<i>IV</i>	. Intravenous
LOS	. Length of hospital stay
<i>LPS</i>	.lipopolysaccharide
<i>MDR</i>	. Multidrug-resistant
<i>MDRO</i>	.Multidrug resistant organism
MRSA	. Methicillin resistant S. aureus
MV	. Mechanical ventilation
<i>NS</i>	.Non significant
S	. Significant
<i>VAP</i>	. Ventilator-associated pneumonia
<i>XDR</i>	. Extensively drug-resistant

Introduction

Ventilator-associated pneumonia (VAP) is a grave cause of morbidity and mortality, complicating approximately 10 to 25% of all ICU patients, with an estimated mortality between 24 and 76%, which is 6–21 times higher in the intubated patients. Also VAP is one of the most common intensive care unit (ICU)-acquired infections that are associated with a prolonged duration of antibacterial treatment, length of hospital stay (LOS), and mechanical ventilation (MV), as well as high mortality and healthcare costs (*Dasgupta et al.*, 2015).

Increasing number of infection cases caused by multidrug resistant organism (MDRO) has become a significant problem worldwide due to the continuous rising of resistance to many classes of antibiotics. Mutant isolates such as fluoroquinolone-resistant and -lactamase-resistant bacteria have been frequently encountered, particularly in intensive care unit (ICU). During the last two decades, there have been less studies of developing antibiotics in search of discovering new type of antibiotics; meanwhile, the resistance of Gram-negative bacteria or MDRO to antibiotics is increasing (*Orsi et al.*, 2011).

Patients with ventilator-associated pneumonia (VAP) caused by multidrug resistant Gram-negative bacteria may be predisposed to poor outcome because of limited therapeutic options and the likelihood of ineffective empirical antibiotic therapy (*Tseng et al., 2012*).

Colistin or polymyxin E is an old antibiotic, which has been used since 1959 for treating infection caused by Gramnegative MDRO. But because of its serious side effects as nephrotoxicity and neurotoxicity; therefore, the use of this antibiotic was stopped and it was replaced by other antibiotics which were effective and were considered safer at that time. However, the emergence of bacteria resistant to most classes of commercially available antibiotics and the shortage of new agents with activity against antimicrobial gram-negative microorganisms have led to the reconsideration of polymyxins as a valuable therapeutic option (Loho and Dharmayanti, 2015).

The target of antimicrobial activity of colistin is the bacterial cell membrane. Electrostatic interactions between the cationic polypeptide (colistin) and anionic lipopolysaccharide (LPS) molecules in the outer membrane of the gram-negative bacteria, which leads to derangement of the cell membrane. Colistin displaces magnesium (Mg⁺²) and calcium (Ca⁺²), (which normally stabilize the LPS molecules), from the negatively charged LPS, leading to a local disturbance of the outer membrane. The result of this process causes an increase in the permeability of the cell envelope, leakage of cell contents and cell death.

Recent studies revealed that nebulized colistin-based therapy, even without concurrent administration of intravenous colistin, may be an effective and safe treatment option for VAP caused by carbapenem-resistant MDR-GNB (Kim et al., 2017).

The use of nebulized colistin in critically ill patients is effectively achieved in high concentrations in the lungs, without much systemic involvement. This study is important because of acute kidney injury (AKI) during intravenous colistin therapy remains a great concern, particularly in elderly patients in intensive care units (ICU) with impaired renal function and concomitant use of other nephrotoxic agents (Balkan et al., 2014; Athanassa et al., 2012).

AIM OF THE WORK

The aim of study is to analyze the efficacy of nebulized colistin-based monotherapy versus intravenous administration of colistin in microbiological eradication and clinical improvement of patients with Ventilator Associated Pneumonia caused by multidrug resistant Gram-negative bacteria.