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Nomenclature

the conserved scalar quantity.

the flux in x direction.

the spatial variable.

time.

the domain.

the k™ element.

the approximate solution over element L.

the approximate flux function over element Lk.

standard element.

the spatial variable in standard element.

the initial point of finite element k.

the terminal point of finite element k.

linear mapping from standard element to physical element L.
the transformed approximate solution.

the transformed approximate flux function.

the Jacobian of transformation associated to physical element L.
Lagrange polynomials

the value of the transformed approximate solution at solution point &; within

the standard element.

the value of the transformed approximate flux function at solution point &;

within the standard element.

the transformed approximate discontinuous flux function.
the approximate physical solution found by transforming transformed

approximate solution back to physical domain.

the approximate physical solution at left end point of the element.

the approximate physical solution at right end point of the element.

the left state value at interface e.

the left state value of element L.

the right state value at interface e.

the left state value of element L.

the transformed interface numerical flux at left end of the standard element.
the transformed discontinuous flux at left end of the standard element.

the transformed interface numerical flux at right end of the standard element.
the transformed corrected flux function.

the left flux correction function.

the right flux correction function.

the Legendre polynomial of degree n.

the parameter defining the correction function.

the degree of the utilized polynomial.

wave number.

the element length.

differentiation matrix composed by Lagrange polynomial bases.

vector containing values of the derivative of the left correction function at

solution points.
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