

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

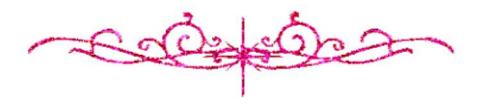
التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار



A CRITICAL STUDY OF HIGHER ORDER DISCONTINUOUS FINITE ELEMENT METHODS FOR SOLUTION OF EULER EQUATIONS

By Yasien Essameldin Saadeldin Abdelaziz Ali Shaaban

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Mathematics

A CRITICAL STUDY OF HIGHER ORDER DISCONTINUOUS FINITE ELEMENT METHODS FOR SOLUTION OF EULER EQUATIONS

By

Yasien Essameldin Saadeldin Abdelaziz Ali Shaaban

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Mathematics

Under the Supervision of

Prof. Dr. Maha Amin Hassanein	Prof. Dr. Mohamed Abdelaziz Elbeltagy
Professor, Engineering Math and Physics Department, Faculty of Engineering, Cairo University	Professor Engineering Math and Physics Department, Faculty of Engineering, Cairo University
Dr. Tamer	Hishmat Kassem

Assistant Professor
Engineering Math and Physics
Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

A CRITICAL STUDY OF HIGHER ORDER DISCONTINUOUS FINITE ELEMENT METHODS FOR SOLUTION OF EULER EQUATIONS

By Yasien Essameldin Saadeldin Abdelaziz Ali Shaaban

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Mathematics

Approved by the
Examining Committee

Prof. Dr. Maha Amin Hassanein, Thesis Main Advisor

Prof. Dr. Mohamed Abdelaziz Elbeltagy, Advisor

Prof. Dr. Mamdouh Fahmy Zaki, Internal Examiner

Prof. Dr. Moustafa Aboudina, External Examiner

- Emeritus Professor, Faculty of Science, Cairo University

Engineer's Name: Yasien Essameldin Saadeldin Abdelaziz

Date of Birth: 23/1/1990 **Nationality:** Egyptian.

E-mail: yasinessameldin@cu.edu.eg

Phone: 01116327548

Address: 159 El-matarawy St. El-Matarya, Cairo, Egypt.

Registration Date: 1/10/2014 **Awarding Date:**/2021 **Degree:** Master of Science

Department: Engineering Mathematics and Physics

Supervisors:

Prof. Maha Amin Ali Hassanein

Prof. Mohamed Abdelaziz Ahmed Elbeltagy Dr. Tamer Hishmat Mohamed Ali Kassem

Examiners:

Prof. Maha Amin Ali Hassanein (Thesis main advisor)
Prof. Mohamed Abdelaziz Ahmed Elbeltagy (Advisor)
Prof. Mamdouh Fahmy Zaki (Internal examiner)
Prof. Moustafa Aboudina (External examiner)
Emeritus Professor, Faculty of Science, Cairo University

Title of Thesis:

A CRITICAL STUDY OF HIGHER ORDER DISCONTINUOUS FINITE ELEMENT METHODS FOR SOLUTION OF EULER EQUATIONS

Key Words:

higher order discontinuous finite element methods for unstructured grids; Euler equations; von Neumann stability analysis; polynomial-based approximation; spatial discretization.

Summary:

This thesis presents a critical study for higher order discontinuous finite element methods. This study includes flux reconstruction approach, which includes discontinuous Galerkin method and spectral difference method. The study is conducted in the light of Von Neumann stability analysis. Hence, two-dimensional solver for quadrilateral grid has been developed. Then, a criticism of the aforementioned method is presented based on Von Neumann analysis. This criticism shows that the utilization of polynomial based approximation does not always yield the well-established order of accuracy in literature. Also, it shows that Euler model is second order accurate as a consequence of modelling error. Hence, the utilization of higher order accurate numerical methods does not make sense in solving the Euler equations. Finally, a new development for finite difference method is proposed. This development enables us to get a second order accurate solution without seeking numerical boundary conditions.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Yasien Essameldin Saadeldin Abdelaziz Date: 12/1/2021

Signature: Yasien Abdelaziz

Acknowledgments

I would like to express all thanks and gratitude to the advisory committee. Prof. Maha has given me full consideration and support. Prof. Mohamed Elbeltagy has helped me a lot and encouraged me to end this work. And Dr. Tamer was a true supervisor who did not retreat in supporting me. Also, I would express all gratitude to Dr. Amr Guiely for his support and help. Thanks again and again my dear professors.

Dedication

This work is dedicated to all professors who taught me throughout undergraduate and postgraduate levels. Thank you indeed, dear professors!

Table of Contents

DISCLAIME	ER	••••••	I
ACKNOWL	EDGMENTS	•••••	II
DEDICATIO	ON		III
TABLE OF (CONTENTS		IV
LIST OF TA	BLES		VI
LIST OF FIG	GURES		VII
NOMENCLA	ATURE		VIII
ABSTRACT	•••••		XI
CHAPTER 1	: INTRODUCTION		1
1.1.	Introduction		1
1.2.	HIGH ORDER METHODS VE	RSUS LOW ORDER METHODS	1
1.3.	HIGHER ORDER DISCONTIN	NUOUS FINITE ELEMENT METHODS	1
1.4.	LITERATURE REVIEW		3
1.4.1.	Introduc	tion	3
1.4.2.	Related '	Work	4
1.4.3.	Summar	y	4
1.5.	THESIS OBJECTIVE	•••••	4
1.6.	THESIS ORGANIZATION		5
CHAPTER 2	: ONE DIMENSIONAL FL	UX RECONSTRUCTION METH	ODOLOGY
FOR FIRST	ORDER PDES	••••••	6
2.1.	METHODOLOGY		6
2.1.1.		aries	
2.1.2.	Impleme	entation	7
2.1.3.	Energy S	Stable Flux Reconstruction Schemes	12
2.2.	Von Neumann Stability	ANALYSIS	13
2.2.1.		aries	
2.2.2.	Semi-Di	screte Relations	15
2.2.3.	Full-Disc	crete Analysis	18
.2.3	NUMERICAL EXPERIMENT.		20
CHAPTER 3	FLUX RECONSTRUCTION	N SCHEME FOR QUADRILATE	CRAL
ELEMENT			23
3.1.	GOVERNING EQUATION		23
3.2.	GOVERNING EQUATION OV	VER STANDARD COORDINATES	23
3.3.	BILINEAR MAPPING		24
3.4.	FLUX RECONSTRUCTION P	ROCEDURES	25
3.5.	NUMERICAL EXPERIMENT	No. 1: 2D ISENTROPIC VORTEX TRAN	NSPORT27

3.5.1.	Pro	oblem Statement	27
3.5.2.	Nu	merical Interface Flux	29
3.5.3.	Re	sults	29
3.6.	NUMERICAL EXPERIM	MENT No. 2: INVISCID FLOW THROUGH A CHA	NNEL WITH
а Smooth B	UMP 32		
3.6.1.	Pro	oblem definition	32
3.6.2.	Во	oundary conditions	32
3.6.2.1.		et/outlet boundary conditions	
3.6.2.2.	Slip	boundary condition	33
3.6.3.	Va	lidation parameter of the numerical solution	33
3.6.4.	Nu	imerical results	33
CHAPTER 4	CRITICISM OF HIGH	HER ORDER DISCONTINUOUS FINITE	
		R SYSTEM OF EQUATIONS	
4.1.	INTRODUCTION:		37
4.2.		HE POLYNOMIAL BASED APPROXIMATION	
4.3.		Y OF THE EULER MODEL	
4.3.	ORDER OF ACCURAC	FOR THE BULER WIODEL	43
CHAPTER 5	SUGGESTED SPATIA	AL DISCRETIZATION METHOD	47
5.1.	Introduction		47
5.2.	ALGORITHM OF THE S	SUGGESTED SPATIAL DISCRETIZATION METHOR	.47
5.3.	WORK COMPLEXITY	Analysis	49
5.4.	ORDER OF ACCURAC	Υ	49
5.5.		ÆNT	
CHAPTER 6	CONCLUSIONS	••••••	53
6.1.	DISCUSSION AND CO	NCLUSIONS	53
6.2.	FUTURE WORK		54
BIBLIOGRA	PHY		55

List of Tables

Table 1: Relative Error in The First Derivative for The First 15 Modes in Fourier Decomposition.

40

List of Figures

Figure 2.1: Solution points inside the standard element for n=3.	8
Figure 2.2: Lagrange third order polynomials.	9
Figure 2.3: The discontinuity between the solution polynomials of two adjacent elements.	10
Figure 2.4: Example of correction function.	11
Figure 2.5.a: Dispersion relation for all modes of DG via FR scheme for n=3.	17
Figure 2.5.b: Imaginary part of numerical wave speed for all modes of DG scheme via FR for n=3.	17
Figure 2.6.a: Dispersion relation for physical mode for DG, SD and Huynh scheme for n=3.	18
Figure 2.6.b: Imaginary part of numerical wave speed for physical modes for DG, SD and Huynh	18
scheme for n=3.	
Figure 2.7: Maximum allowed time step for different values of parameter c.	20
Figure 2.8: Traveling Gaussian profile, solution at t=20 using third order polynomial and c=c _{DG} .	21
Figure 2.9: Traveling Gaussian profile, solution at t=20 using third order polynomial and c=c _{SD} .	21
Figure 2.10: Traveling Gaussian profile, solution at t=20 using third order polynomial and	22
C=CHuynh.	
Figure 3.1: Transformation from physical element to standard element.	25
Figure 3.2: Solution points and flux points within standard element.	26
Figure 3.3: Initial density distribution.	28
Figure 3.4: L2 norm of the error of density for a sequence of uniform grid of square elements.	30
Figure 3.5: Order of accuracy of the solver, calculated using least square curve fitting of meshes	30
$80x80$, $100x100$ and $120x120$, third order scheme with $c=c_{DG}$.	
Figure 3.6: Nonuniform grid of 16348 elements.	31
Figure 3.7: L2-norm of the error density for 5000 time-steps, solution using third order scheme with $c=c_{DG}$.	31
Figure 3.8.b: Channel, grid of 32x16 quadrilateral elements.	34
Figure 3.9: Channel, grid of 64x32 quadrilateral elements.	34
Figure 3.10: Channel, grid of 04x32 quadrilateral elements.	34
Figure 3.11: Convergence history, in terms of entropy error.	35
Figure 3.12: Contour plot of pressure inside channel.	35
Figure 3.13: Contour plot of density inside channel.	36
Figure 3.14: contour plot of Mach No. inside channel.	36
Figure 4.1: Distribution of different point sets used in calculating derivative Fourier modes.	39
Figure 4.2: Ratio of relative error using 2 consecutive refinements.	41
Figure 4.3: Dispersion and dissipation relation for first order finite difference scheme and different	
HODFE schemes via FRA.	43
Figure 4.4: Order of accuracy of the solver for linear advection equation of the first initial	
condition.	44
Figure 4.5: Order of accuracy of the solver for linear advection equation of the second initial	
condition.	44
Figure 4.6: Control Volume and distribution of quantity X_0 , considering linear terms in Taylor	
expansion around its center.	45
Figure 5.1: Initial solution for inviscid Burgers equation.	50
Figure 5.2: Order of Accuracy of first order upwind McCormack scheme and UW-scheme for	
7000 iterations.	51
Figure 5.3: Number of degrees of freedom for UW scheme for 7000 iterations.	52

Nomenclature

v	the conserved scalar quantity.
g	the flux in x direction.
\boldsymbol{x}	the spatial variable.
t	time.
L	the domain.
L_k	the k th element.
$L_k \ v_k^{\delta D}$	the approximate solution over element L_k .
g_k^δ	the approximate flux function over element L_k .
$egin{array}{c} g_k^\delta \ L_S \ \xi \end{array}$	standard element.
ξ	the spatial variable in standard element.
x_k	the initial point of finite element k.
x_{k+1}	the terminal point of finite element k.
$\Theta_k(\xi)$	linear mapping from standard element to physical element L _k .
$\hat{v}^{\delta D}$	the transformed approximate solution.
\widehat{g}^{δ}	the transformed approximate flux function.
J_k	the Jacobian of transformation associated to physical element L _k .
l_j	Lagrange polynomials
$\widehat{v}_i^{\delta D}$	the value of the transformed approximate solution at solution point ξ_i within
25	the standard element.
$\widehat{g}_i^{\delta \scriptscriptstyle D}$	the value of the transformed approximate flux function at solution point ξ_i
4 SD	within the standard element.
$\widehat{g}^{\delta D}_{}$	the transformed approximate discontinuous flux function.
$v^{\delta D}$	the approximate physical solution found by transforming transformed
δD	approximate solution back to physical domain.
$v_L^{\delta D}$	the approximate physical solution at left end point of the element.
$v_R^{\delta D} \ v_{e,-}^{\delta D}$	the approximate physical solution at right end point of the element.
$v_{e,-}^{ob}$	the left state value at interface e.
$v_{k,R}^{\delta D}$	the left state value of element L_k .
$v_{e,+}^{\delta D}$	the right state value at interface e.
$v_{k+1,L}^{\delta D}$	the left state value of element L_k .
$\widehat{g}_{L}^{\delta I}$	the transformed interface numerical flux at left end of the standard element.
$\widehat{g}_L^{\delta D}$	the transformed discontinuous flux at left end of the standard element.
$\widehat{g}_L^{\delta I} \ \widehat{g}_L^{\delta D} \ \widehat{g}_L^{\delta B} \ \widehat{g}_L^{\delta S}$	the transformed interface numerical flux at right end of the standard element.
$\hat{g}^{\delta \mathcal{C}}$	the transformed corrected flux function.
P_L	the left flux correction function.
P_R	the right flux correction function.
h_n	the Legendre polynomial of degree n.
c	the parameter defining the correction function.
n	the degree of the utilized polynomial.
k	wave number.
h N	the element length. differentiation matrix composed by Lagrange polynomial bases.
	vector containing values of the derivative of the left correction function at
$\mathbf{P}_{\xi L}$	solution points.
	solution points.