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Summary:  

This thesis presents a critical study for higher order discontinuous finite element 

methods. This study includes flux reconstruction approach, which includes 

discontinuous Galerkin method and spectral difference method. The study is conducted 

in the light of Von Neumann stability analysis. Hence, two-dimensional solver for 

quadrilateral grid has been developed. Then, a criticism of the aforementioned method 

is presented based on Von Neumann analysis. This criticism shows that the utilization 

of polynomial based approximation does not always yield the well-established order 

of accuracy in literature. Also, it shows that Euler model is second order accurate as a 

consequence of modelling error. Hence, the utilization of higher order accurate 

numerical methods does not make sense in solving the Euler equations. Finally, a new 

development for finite difference method is proposed. This development enables us to 

get a second order accurate solution without seeking numerical boundary conditions. 
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Nomenclature 

𝑣 the conserved scalar quantity. 

𝑔 the flux in x direction. 

𝑥 the spatial variable. 

𝑡 time. 

𝐿 the domain. 

𝐿𝑘 the kth element. 

𝑣𝑘
𝛿𝐷 the approximate solution over element Lk. 

𝑔𝑘
𝛿 the approximate flux function over element Lk. 

𝐿𝑆 standard element. 

𝜉 the spatial variable in standard element. 

𝑥𝑘 the initial point of finite element k. 

𝑥𝑘+1 the terminal point of finite element k. 

𝛩𝑘(𝜉) linear mapping from standard element to physical element Lk. 

𝑣𝛿𝐷 the transformed approximate solution. 

𝑔̂𝛿 the transformed approximate flux function. 

𝐽𝑘 the Jacobian of transformation associated to physical element Lk. 

𝑙𝑗 Lagrange polynomials 

𝑣𝑖
𝛿𝐷 the value of the transformed approximate solution at solution point 𝜉𝑖  within 

the standard element. 

𝑔̂𝑖
𝛿𝐷 the value of the transformed approximate flux function at solution point 𝜉𝑖  

within the standard element. 

𝑔̂𝛿𝐷 the transformed approximate discontinuous flux function. 

𝑣𝛿𝐷 the approximate physical solution found by transforming transformed 

approximate solution back to physical domain. 

𝑣𝐿
𝛿𝐷 the approximate physical solution at left end point of the element. 

𝑣𝑅
𝛿𝐷 the approximate physical solution at right end point of the element. 

𝑣𝑒,−
𝛿𝐷 the left state value at interface e. 

𝑣𝑘,𝑅
𝛿𝐷 the left state value of element Lk. 

𝑣𝑒,+
𝛿𝐷  the right state value at interface e. 

𝑣𝑘+1,𝐿
𝛿𝐷 the left state value of element Lk. 

𝑔̂𝐿
𝛿𝐼 the transformed interface numerical flux at left end of the standard element. 

𝑔̂𝐿
𝛿𝐷 the transformed discontinuous flux at left end of the standard element. 

𝑔̂𝑅
𝛿𝐼 the transformed interface numerical flux at right end of the standard element. 

𝑔̂𝛿𝐶 the transformed corrected flux function. 

𝑃𝐿 the left flux correction function. 

𝑃𝑅 the right flux correction function. 

hn the Legendre polynomial of degree n. 

c the parameter defining the correction function. 

𝑛 the degree of the utilized polynomial. 

k wave number. 

h the element length. 

𝑵 differentiation matrix composed by Lagrange polynomial bases. 

𝐏𝜉𝐿 vector containing values of the derivative of the left correction function at 

solution points. 


