

# بسم الله الرحمن الرحيم



-Call 4000





شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم





# جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

# قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار





#### Iron Homeostasis and Tissue Inflammation in Gaucher Patients on Enzyme Replacement Therapy

#### AThesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

#### By

#### **Mohamed Nageh Abd Elhamed**

M.B.B.Ch, Faculty of Medicine, Ain Shams University (2015)

#### Under Supervision of

#### Prof. Dr. Azza Abd El Gawad Tantawy

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

#### Prof. Dr. Amira Abd El Moneam Adly

Professor of Pediatrics Faculty of Medicine, Ain Shams University

#### Dr. Nouran Yousef Salah El Din

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021



سورة البقرة الآية: ٣٢

## Acknowledgment

First and above all, my gratitude is to **Allah**, the Most Merciful, and the Most Gracious for His benediction to accomplish this work.

It has been a special honor to undergo this research under the supervision of **Prof. Dr. Azza Abd El Gawad Tantawy**, Professor of Paediatrics, Faculty of Medicine, Ain Shams University, and **Prof. Dr. Amira Abd El Moneam Adly**, Professor of Paediatrics, Faculty of Medicine, Ain Shams University, for their gracious supervision, unending support and for the help and guidance, they allocated for the project.

I can never quite express the gratitude for all the help from my mentor, **Dr. Nouran Yousef Salah El Din**, Lecturer of Paediatrics, Faculty of Medicine, Ain Shams University, for her dedication, support, constant and kind guidance.

Last but not least, my sincere thanks to all my professors, my colleagues and my family for supporting me directly and indirectly to finish this research.

Mohamed Nageh Abd Elhamed

# List of Contents

| Title                                | Page No. |
|--------------------------------------|----------|
|                                      |          |
| List of Abbreviations                | i        |
| List of Tables                       | iii      |
| List of Figures                      | v        |
| Introduction                         | 1        |
| Aim of the Work                      | 5        |
| Review of Literature                 |          |
| Gaucher Disease                      | 6        |
| Iron Homeostasis in Gaucher Patients | 23       |
| Biomarkers                           | 31       |
| Patients and Methods                 | 36       |
| Results                              | 43       |
| Discussion                           | 72       |
| Conclusion                           | 82       |
| Recommendations                      | 83       |
| Summary                              | 84       |
| References                           | 86       |
| Arabic Summary                       |          |

## List of Abbreviations

| Abb.     | Full term                                   |
|----------|---------------------------------------------|
| ACD      | . Anemia of chronic disease                 |
| ACE      | . Angiotensin converting enzyme             |
|          | . Anemia of inflammation                    |
| AID      | . Absolute iron deficiency                  |
| AVN      | . Avascular bone necrosis                   |
| BMI      | . Body mass index                           |
| BMT      | . Bone marrow transplantation               |
| CBC      | . Complete blood count                      |
| CCL18    | . CC chemokine ligand 18                    |
| ChT      | . Chitotriosidase                           |
| CNS      | . Central nervous system                    |
| DMT1     | . Divalent metal transporter                |
| ELISA    | . Enzyme-Linked Immunosorbent Assay         |
| ERT      | . Enzyme replacement therapy                |
| FID      | . Functional iron deficiency                |
| FOV      | . Field of view                             |
| GCase    | . Glucocerebrosidase                        |
| GD       | . Gaucher disease                           |
| HGB      | . Hemoglobin                                |
| ICGG     | . International Collaborative Gaucher Group |
| IQR      | . Interquartile range                       |
| IRMA     | . Immunoradiometric assay                   |
| kg       | . Kilogram                                  |
| LSDs     | . Lysosomal storage diseases                |
| Lyso_GL1 | . Glucosylsphingosine                       |

## List of Abbreviations Cont...

| Abb. | Full term                                    |
|------|----------------------------------------------|
| PARC | Pulmonary and activation-regulated chemokine |
| PAUS | Pelvi abdominal ultrasound                   |
| PCT  | Pharmacological chaperone therapy            |
| PLT  | Platelet                                     |
| S    | Serum                                        |
| SDS  | Standard deviation score                     |
| SRT  | Substrate reduction therapy                  |
| TFE  | Turbo field echo                             |
| TIBC | Total iron binding capacity                  |
| TRAP | Tartrate-resistant acid phosphatase          |
| TSAT | Transferrin saturation                       |
| WBC  | White blood cells                            |
| WHO  | World Health Organization                    |
| ZSSI | Zimran severity score index                  |

# List of Tables

| Table No.          | Title                                                                                                                 | Page No.                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------|
| Table (1):         | Clinical classification of GD                                                                                         | 10                       |
| <b>Table (2):</b>  | Age at diagnosis, duration of ER scoring index and radiological d studied GD patients                                 | lata of the              |
| <b>Table (3):</b>  | Showing phynotypic and distribution among the studied and the presence of family history                              | d patients               |
| <b>Table (4):</b>  | Demographic characteristics of<br>properly matched controls as re-<br>age and anthropometric measures                 | egards sex,              |
| <b>Table (5):</b>  | Laboratory data levels of inf<br>parameters and iron metabolism<br>with GD in compared to control gro                 | in patients              |
| <b>Table (6):</b>  | Comparison between hemoglobic<br>and serum ferritin in Gaucher I<br>diagnosis and follow up after rece                | patients at              |
| <b>Table</b> (7):  | Demographic and anthropometr<br>studied patients comparing be-<br>type1 and GD type3 patients                         | tween GD                 |
| <b>Table</b> (8):  | Age at diagnosis, duration of ER scoring index and radiological d studied GD patients comparing GD type1 and GD type3 | lata of the<br>g between |
| <b>Table (9):</b>  | Comparison between GD type 1 type 3 patients regarding compount parameters                                            | olete blood              |
| <b>Table (10):</b> | Comparison between iron n<br>parameters and inflammatory k<br>(CCL18, Lyso-GL-1) in GD type<br>type 3 patients        | oiomarkers<br>e1 and GD  |

# List of Tables Cont...

| Table No.          | Title                                                                                                                                                                   | Page No.                        |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <b>Table</b> (11): | Correlation of ferritin, hepcidin and with demodraphic, laboratory radiological data among gaucher pa                                                                   | 7 and                           |
| <b>Table (12):</b> | Showing correlations between S gaucher disease biomarkers                                                                                                               |                                 |
| <b>Table</b> (13): | Demographics and anthropometric n<br>in Gaucher patients Comparing Patie<br>serum ferritin level above and below                                                        | ents had                        |
| <b>Table (14):</b> | Showing comparison in laborator between Gaucher patients had ferritin level above and below 100                                                                         | serum                           |
| Table (15):        | Showing comparison in age at of duration of ERT, severity scoring in radiological data between Gaucher pattern ferritin level above and below 100                       | idex and<br>ients had           |
| <b>Table (16):</b> | Showing demographic and anthrop data of the studied patients conbetween Gaucher patients had transaturation <20 and patients had transaturation > 20.                   | mparing<br>nsferrin<br>nsferrin |
| <b>Table (17):</b> | Showing comparison in laborator between Gaucher patients had transferrin saturation > 20                                                                                | nsferrin<br>s had               |
| <b>Table</b> (18): | Showing comparison in age at diduration of ERT, severity scoring in radiological data between Gaucher had transferrin Saturation <2 patients had transferrin Saturation | dex and patients 20 and         |

# List of Figures

| Fig. No.            | Title                                                                                                                                                                                                                                         | Page No.                                                |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Figure (1):         | Hydrolysis of glucosylceramide (Gglucocerebrosidase (GCase)                                                                                                                                                                                   | in the                                                  |
| Figure (2):         | A: X-ray of both femurs showing images with ill-defined compatible with sequelae of a bone <b>B</b> . Coronal MRI view of both evidencing changes in signal into the central and distal thirds, co with bone infarcts and Erlenment deformity | borders, e infarct. femurs ensity in mpatible yer flask |
| Figure (3):         | Showing sex distribution in both controls                                                                                                                                                                                                     |                                                         |
| Figure (4):         | Weight Z score in GD paties controls.                                                                                                                                                                                                         |                                                         |
| Figure (5):         | Height Z score among GD patie controls.                                                                                                                                                                                                       |                                                         |
| Figure (6):         | BMI Z score among GD patie controls.                                                                                                                                                                                                          |                                                         |
| <b>Figure (7):</b>  | TIBC among GD patients and cont                                                                                                                                                                                                               | trols 50                                                |
| Figure (8):         | Platelets count among GD patie controls.                                                                                                                                                                                                      |                                                         |
| Figure (9):         | Hepcidin level among GD patie controls.                                                                                                                                                                                                       |                                                         |
| Figure (10):        | CCL18 level among GD patie controls.                                                                                                                                                                                                          |                                                         |
| <b>Figure</b> (11): | Serum ferritin among GD patie controls                                                                                                                                                                                                        |                                                         |
| <b>Figure (12):</b> | Comparison between SSI among type3 studied GD patients                                                                                                                                                                                        | -                                                       |

# List of Figures Cont...

| Fig. No.            | Title                                                                          | Page No.  |
|---------------------|--------------------------------------------------------------------------------|-----------|
| Figure (13):        | Comparison between S.iron am and type3 studied GD patients                     |           |
| <b>Figure</b> (14): | Showing positive correlation hepcidin level and serum ferri gaucher patients   | tin among |
| <b>Figure</b> (15): | Showing positive correlation hepcidin level and CCL18 in patients              | n gaucher |
| <b>Figure (16):</b> | Showing positive correlation ferritin level and SSI in gaucher                 |           |
| <b>Figure</b> (17): | Showing negative correlation serum ferritin level and splenic gaucher patients | volume in |
| Figure (18):        | Showing positive correlation hepcidin level and Lyso_GL1 i patients            | n gaucher |
| <b>Figure (19):</b> | Showing positive correlation ferritin level and SSI in gaucher                 |           |
| Figure (20):        | Showing positive correlation hepcidin level and SSI amon patients              | g gaucher |
| <b>Figure (21):</b> | Showing positive correlation CCL18 and SSI in gaucher patie                    |           |
| <b>Figure (22):</b> | Showing positive correlation CCL18 and SSI in gaucher patie                    |           |

#### Introduction

aucher disease (GD), the most common of the lysosomal storage diseases (LSDs) (15%), was first described by Philippe Gaucher in 1882. It is a rare, autosomal recessive genetic disease caused by mutation in the GBA1 gene, located on chromosome 1 (1q21), leading to a decrease in the activity of a lysosomal enzyme, glucocerebrosidase (GCase) or by deficiency in the activator of GCase (saposin C) (*Roshan al et al.*, 2017).

Its incidence is around 1/40,000 to 1/50,000 births in the general population, but can reach 1/800 births in the Ashkenazi Jewish population (*Stirnemann et al., 2017*), it is classically categorized into three phenotypic variants, based on the presence (types 2 and 3) or absence (type 1) of central nervous system involvement (*Potnis et al., 2019*).

Type 1 GD (95% of cases) usually manifests with splenomegaly, hepatomegaly, anemia, thrombocytopenia, bone disease and delayed growth. Type 2 is characterized by a precocious and fast brainstem degeneration; these patients do not respond to treatment and death mostly occurs within the first two years of life. Type 3 GD patients have a slow evolving neurologic disease and usually present with seizures, eye movement abnormalities and mild systemic involvement with mean survival being to the third decade of life (*Alaei et al.*, 2019).



Historically, GD1 was treated with supportive measures such as splenectomy and orthopedic procedures. Today, new therapeutics have dramatically altered the natural history of the disease both in children and adults. Approved therapies include enzyme replacement therapy (ERT) and substrate reduction therapy (SRT), other therapeutic strategies are currently in development (Gary et al., 1018).

ERT was developed, becoming the standard of care since 1991. It is based on the provision of sufficient exogenous enzyme to overcome the block in the catabolic pathway and effect the clearance of the stored substrate, glucosylceramide. Three of them are available: Imiglucerase, Velaglucerase alfa and Taliglucerase alfa. SRT is an alternative oral approach, based on reduced synthesis of glucosylceramide by inhibiting the appropriate synthetic resulting in decreased production of this dangerous lipid and the ability of the residual enzyme activity to restablish a new steady state (Linari & Castaman, *2016*).

Increased serum ferritin appears in more than 60% of people with GD at diagnosis. In GD there is an increased amount of iron in Gaucher cells, with no evidence of increased avidity between iron and GCase storage material. The excess of iron induces a conversion of hydrogen peroxide free radical that is very toxic to tissues through oxidation of proteins, peroxidation of membrane lipids and modification of nucleic acids (Medrano-Engay et al., 2014).