

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

Enhancement productivity of Potato plant using electromagnetic pulses

A Thesis

Submitted for partial fulfillment for the Degree of Master of Science in Botany

 $\mathbf{B}\mathbf{y}$

Moustafa Refaat Ahmed Fahmy Nassar

B.Sc. (Chemistry and Botany 2012)
Faculty of Science, Minia University

Supervisors

Prof. Dr. Hosny Abdel Aziz Mosallam

Professor of Plant Ecology

Botany Department - Faculty of Science - Ain Shams University

Prof. Dr. Fadel Mohammed Ali

Professor of Biophysics

Biophysics Department - Faculty of Science - Cairo University

Dr. Hend Ahmed Kamel

Lecturer of Botany

Botany Department - Faculty of Science - Ain Shams University

(2021)

Enhancement productivity of Potato plant using electromagnetic pulses

A Thesis

Submitted for partial fulfillment for the Degree of Master of Science in Botany

 $\mathbf{B}\mathbf{y}$

Moustafa Refaat Ahmed Fahmy Nassar

B.Sc. (Chemistry and Botany 2012)
Faculty of Science, Minia University

Supervisors

Prof. Dr. Hosny Abdel Aziz Mosallam

Professor of Plant Ecology

Botany Department - Faculty of Science - Ain Shams University

Prof. Dr. Fadel Mohammed Ali

Professor of Biophysics

Biophysics Department - Faculty of Science - Cairo University

Dr. Hend Ahmed Kamel

Lecturer of Botany

Botany Department - Faculty of Science - Ain Shams University

(2021)

Approval Sheet

Title: Enhancement productivity of Potato plant using

electromagnetic pulses

Degree: Master of Science in Botany

Student Name: Moustafa Refaat Ahmed Fahmy Nassar

Supervision Committee

Prof. Dr. Hosny Abdel Aziz Mosallam

Professor of Plant Ecology (Botany Department) Faculty of Science. Ain Shams University.

Prof. Dr. Fadel Mohammed Ali

Professor of Biophysics (Biophysics Department) Faculty of Science. Cairo University.

Dr. Hend Ahmed Kamel

Lecturer of Botany (Botany Department) Faculty of Science. Ain-Shams University.

Examination Committee

Prof. Dr. Hosny Abdel Aziz Mosallam

Professor of Plant Ecology (Botany Department) Faculty of Science. Ain Shams University.

Prof. Dr. Fadel Mohammed Ali

Professor of Biophysics (Biophysics Department) Faculty of Science.

Cairo University.

Prof. Dr. Lotfy Mohsen Hassan

Professor of Ecology (Botany and Microbiology Department) Faculty of Science. Helwan University.

Prof. Dr. Magdy Ibrahim El-Banna

Professor of Plant Ecology (Botany Department) Faculty of Science. Port Said University.

Head of Botany Department

Prof. Dr. Mohamed El-Sayed Tantawy Khalifa

DECLARATION This thesis has not been submitted for a degree at this or any other university. Moustafa Refaat

Acknowledgment

Greatest thanks to Allah for allowing me to do this work.

I am greatly indebted to my professors and supervisors. Prof. Dr. Hosny Abdel Aziz Mosallam for encouragement and great support; Prof. Dr. Fadel Mohammed Ali for guidance and great support; and Dr. Hend Ahmed Kamel for help and support.

Deep gratitude appreciation is due to Dr. Naglaa Balabel and her team for Support and generosity, great thanks to EMBT Co. for the generous support.

A great thanks to the great people in my life: My Dear Parents, brother and sister for their great support, and patience; my fiancée for her help and support, and all my family specially Dr. Ahmed Hegazy for his support.

My immense gratitude and indebtedness to All professors and staff members of the Botany Department, Faculty of Science, Ain Shams University, for their continuous support and help.

Table of Abbreviation

Abbreviation	Complete word
FAO	Food and Agriculture Organization of the United Nations
FAOSTAT	Food and Agriculture Organization Corporate Statistical Database
EMF	Electromagnetic field
EF	Electric Field
MF	Magnetic Field
EM	Electromagnetic
ICNIRP	International Commission on Non-Ionizing Radiation Protection
Hz	Hertz
V	Volt
DC	Direct current
eV	Electron volt
Chl a	Chlorophyll a
Chl b	Chlorophyll b
PI	Post Implantation
GST	Glutathione S-transferase
GSH	reduced glutathione
CDNB	1-chloro 2,4-dinitrobenzene

Table of Contents

1.	Introduction	1
2.	Review	4
3.	EMF Basics and Safety	.10
4.	Materials and Methods	.13
5.	Results	.24
6.	Discussion	.57
7.	Conclusion	.63
8.	Summary	.64
9.	References	67

List of Tables

Table number	Table title	Page number
1	Table (1) Influence of exposure to 1.0 Hz EF on No. of Leaves / plant; Leaf area(cm2); Shoot length (cm); Root length (cm); Fresh shoot weight(gm); Dry shoot weight(gm); No of tuber/plant; Fresh root weight (gm); Dry root weight (gm); Tuber fresh weight (gm) and Tuber dry weight(gm) in clay and sand soil of the lab experiment.	26
2	Table (2) Influence of exposure to 1.0 Hz EF on Total Chlorophyll in leaves (mg chlorophyll /g Fwt); Total Carbohydrate in leaves and tubers (μg glucose / g Fwt.); Total protein in leaves and tubers (mg/gm)and amino acids in leaves and tubers (mg/gm) in clay and sand soil of the lab experiment.	30
3	Influence of exposure to 1.0 Hz EF on different nutrition elements Calcium(ug/gm); Nitrogen(mg/gm); Phosphorus(ug/gm); and Potassium content (u mol/gm) in leaves) in clay and sand soil of the lab experiment.	34
4	Influence of exposure to 1.0 Hz EF on vitamin C(ug A.A./gm); Phenol oxidases (O.D.x 103/min/gm); Peroxidases (ΔO.D.x 103/min/gm); and GST (m mole sub.conj/min/gm fresh wt) in leaves and tubers in clay and sand soil of the lab experiment.	37
5	Influence of exposure to 1.0 Hz EF on No. of Leaves / plant; Leaf area(cm²); Shoot length (cm); Root length (cm); Fresh shoot weight(gm); Dry shoot weight(gm); No of tuber/plant; Fresh root weight (gm) and Dry root weight (gm) for Spunta and Almond in field experiment.	45
6	Influence of exposure to 1.0 Hz EF on No. of tubers /plant; Yield (tons/feddan); Tuber weight (gm): Total Chlorophyll (mg chlorophyll /g Fwt); Total Carbohydrate (µg glucose / g Fwt.); Total protein(mg/gm) for Spunta and Almond in field experiment.	49
7	Influence of exposure to 1.0 Hz EF on different nutrition elements Calcium(ug/gm); Nitrogen(mg/gm); Phosphorus(ug/gm); and Potassium content (u mol/gm) in leaves for Spunta and Almond in field experiment.	54

List of Figures

Figure Number	Figure title	Page Number
1	The Electromagnetic Spectrum	11
2	Reference levels for exposure to time varying electric fields	12
3	Schematic diagram for Exposure facility	15
4	Schematic diagram for Exposure facility modification used for Field exposure	15
5	Photograph showing the plants in Exposure facility	15
6	Influence of exposure to 1.0 Hz EF on number of leaves per plant in lab.	27
7	Influence of exposure to 1.0 Hz EF on leaf area in lab.	27
8	Influence of exposure to 1.0 Hz EF on Shoot length in lab.	27
9	Influence of exposure to 1.0 Hz EF on Root length in lab.	27
10	Influence of exposure to 1.0 Hz EF on fresh and dry root weight in lab	28
11	Influence of exposure to 1.0 Hz EF on fresh and dry Shoot weight in lab.	28
12	Influence of exposure to 1.0 Hz EF on fresh and dry Potato tuber weight in lab.	28
13	Influence of exposure to 1.0 Hz EF on leaves Total chlorophyll in lab.	31
14	Influence of exposure to 1.0 Hz EF on leaves total carbohydrate in lab.	31
15	Influence of exposure to 1.0 Hz EF on tubers total carbohydrate in lab.	31
16	Influence of exposure to 1.0 Hz EF on leaves total protein in lab.	31
17	Influence of exposure to 1.0 Hz EF on tubers total protein in lab.	31

18	Influence of exposure to 1.0 Hz EF on leaves Free amino acids in lab	32
19	Influence of exposure to 1.0 Hz EF on tubers Free amino acids in lab.	32
20	Influence of exposure to 1.0 Hz EF on leaves vitamin c in lab.	38
21	Influence of exposure to 1.0 Hz EF on tubers vitamin c in lab.	38
22	Influence of exposure to 1.0 Hz EF on leaves content of Phenol oxidases in lab.	38
23	Influence of exposure to 1.0 Hz EF on tuber content of Phenol oxidases in lab.	38
24	Influence of exposure to 1.0 Hz EF on leaves content of Peroxidases in lab	39
25	Influence of exposure to 1.0 Hz EF on tuber content of Peroxidases in lab.	39
26	Influence of exposure to 1.0 Hz EF on leaves content of glutathione transferase in lab.	39
27	Influence of exposure to 1.0 Hz EF on tubers content of glutathione transferase in lab.	40
28	Photograph showing potato plants in lab experiment at 85PI.	40
29	photograph showing potato tubers resulted from the control group which had no exposure in Lab.	40
30	Photograph showing potato tubers resulted from further exposure to 1.0 Hz Electric field at day 70 post implantation in Lab	41
31	Photograph showing potato tubers resulted from exposure to 1.0 Hz Electric field at day 35 post implantation in Lab.	41
32	Photograph show the difference between potato plants of control group and 35PI exposure group, at the stage of tuber initiation.	42

33	Influence of exposure to 1.0 Hz EF on number of leaves per plant in field.	46
34	Influence of exposure to 1.0 Hz EF on leaf area in field.	46
35	Influence of exposure to 1.0 Hz EF on shoot length in field.	46
36	Influence of exposure to 1.0 Hz EF on root length in field	46
37	Influence of exposure to 1.0 Hz EF on fresh and dry shoot weight in field.	47
38	Influence of exposure to 1.0 Hz EF on fresh and dry shoot weight in field.	47
39	Influence of exposure to 1.0 Hz EF on Number of tuber/Plant in field.	50
40	Influence of exposure to 1.0 Hz EF on Yield (Tons/Feddan) in field.	50
41	Influence of exposure to 1.0 Hz EF on Tubers weight in field.	50
42	Influence of exposure to 1.0 Hz EF on Total chlorophyll of leaves in field.	50
43	Influence of exposure to 1.0 Hz EF leaves Total carbohydrates in field.	53
44	Influence of exposure to 1.0 Hz EF tubers Total protein in field.	53
45	Influence of exposure to 1.0 Hz EF leaves Total protein in field	53
46	Influence of exposure to 1.0 Hz EF tubers Total protein in field.	53
47	Photograph show the potato plants at the field during the preparation for the 35PI exposure.	55
48	Photograph show the potato plants at the field during the 70PI exposure.	56
49	Photograph show the potato tubers in the field during harvest.	56

Name: Moustafa Refaat Ahmed Fahmy Nassar

Title: Enhancement productivity of Potato plant using electromagnetic pulses

Degree: Master of Science in Botany

Abstract

Potatoes are a very important vegetable crops in Egypt both for local consumption and for export. Potato crop is suffering from destructive bacterial wilt disease called brown rot. Control of that potato brown rot has proven to be a serious task. Chemical control was tried without much success with risk of hazardous effects on Human and environment. Recently, a new study indicated that the exposure to 1.0 Hz positive electric fields for one hour caused significant inhibition in bacterial growth causing brown rot. However, the environmentally friendly new method Raises the importance to study the effect on healthy potato plants. In this work the effects of 1.0 Hz electric field on the physiological properties of healthy potato (Solanum tuberosum L.). plant is studied. Lab and field experiment were done to test the effect of 1.0 Hz Electric field. the Lab exposure done on (Spunta) in clay and sand soil, Results indicated significant increase in shoot, root, and tuber weights and lengths and increase of plant and tuber N, P, K⁺ and Ca²⁺ content along with total chlorophyll, carbohydrates, proteins, amino acids, ascorbic acid and anti-oxidant enzymes. However, no change in tuber per plant number was detected. The second experiment were done on two potato varieties (Spunta and