

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

THE USE OF SOME ENVIRONMENTALLY SAFE COMPOUNDS IN THE MILLING OF CEREALS TO PRODUCE HEALTHY BAKERY BRODUCTS

Submitted By Maha Mostafa Abdel Aziz Zabib

B.Sc. of Agricultural Sciences, Faculty of Agriculture, Ain Shams University, 1987

Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2008

M. Sc. in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2013

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Agricultural Sciences Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET

THE USE OF SOME ENVIRONMENTALLY SAFE COMPOUNDS IN THE MILLING OF CEREALS TO PRODUCE HEALTHY BAKERY BRODUCTS

Submitted By Maha Mostafa Abdel Aziz Zabib

B.Sc. of Agricultural Sciences, Faculty of Agriculture, Ain Shams University, 1987

Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2008

M. Sc. in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2013

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Agricultural Sciences

This thesis was discussed and approved by:

The Committee Signature

1-Prof. Dr. Gihan Mohamed El-Moghazy

Prof. of Food Safety. Regional Center for Food & Feed Agricultural Research Center

2-Prof. Dr. Ahmed Youssef Gibril

Prof. of Food Industries . Department of Food Sciences Faculty of Agriculture
Ain Shams University

3-Prof. Dr. Hamdy Moustafa Ebeid

Prof. of Food Industries . Department of Food Sciences Faculty of Agriculture Ain Shams University

4-Prof. Dr. Mohamed Abd El-Razek El-Nawawy

Emeritus Prof. of Food Microbiology . Department of Food Science Faculty of Agriculture Ain Shams University

THE USE OF SOME ENVIRONMENTALLY SAFE COMPOUNDS IN THE MILLING OF CEREALS TO PRODUCE HEALTHY BAKERY BRODUCTS

Submitted By Maha Mostafa Abdel Aziz Zabib

B.Sc. of Agricultural Sciences, Faculty of Agriculture, Ain Shams University, 1987

Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2008 M. Sc. in Environmental Sciences, Institute of Environmental Studies

& Research, Ain Shams University, 2013

A Thesis Submitted in Partial Fulfillment Of

The Requirement for the Doctor of Philosophy Degree In

Environmental Sciences

Department of Environmental Agricultural Sciences Under The Supervision of:

1-Prof. Dr. Farouk Mohamed El-Talawy (Died)

Prof. of Food Technology and Head of Department of Environmental Agricultural Sciences – Institute of Environmental Studies & Research Ain Shams University

2-Prof. Dr. Mohamed Abd El-Razek El-Nawawy

Emeritus Prof. of Food Technology– Department of Food Sciences Faculty of Agriculture
Ain Shams University

3-Prof. Dr. Hamdy Moustafa Ebeid

Prof. of Food industryies – Department of Food Sciences Faculty of Agriculture Ain Shams University

سورة البقرة الآية: ٣٢

I extend my gratitude to Prof. Dr. M. A. El-Nawawy. Professor of Microbiology, Food Sci. Dept. Faculty of Agric., Ain Shams University, Cairo. Egypt For his useful help and tireless efforts that helped put the work in its final form for his direct supervision, suggestion of the topic, continuous help and advice during preparing this letter as it is of great value and stature I was honored to be a student with him, may God reward him well.

I am especially indebted to me and the recognition of his support for me and the support of Dr. Tamer Teweefk Mohamed Al-Sisi, the Central Laboratory for Food and Feed for his continuous and useful assistance and his great efforts in preparing the study

I extend a special thanks to Dr. Amal Abdullah Hegazy, Department of Food Industries, Ain Shams College of Agriculture for her assistance in this study.

I would like to thank Dr. Marwa Hatem El-Gendy, Desert Research Center, for her valuable and useful assistance in this study.

I also owe a debt of thanks and greetings to Dr. Mohamed Saad Labnah, Chemtech International Laboratories in 6th of October City for his useful assistance in this study

Finally, I would like to thank my husband, my daughter, my family and friends for their continuous help and encouragement through this work.

Abstract

Maha Mustafa Abdel Aziz ZEPEP. Use of some environmentally safe compounds in the milling of cereals to produce healthy safe bakery products, Unpublished Ph.D. Thesis, Department of Agricultural Science, Institute of Environmental Studies and Research, Ain Shams. University, (2020).

The objectives of the present work were study the effects of wheat milling approuches on fungal mycota and mycotoxin distribution in products and by-products. Thus, the effectiveness of some organic acids used as anti - fugals on the fungal pollution in the imported wheat grains during conditioninging and milling were carried out to evaluate and define the efficient dose.

A preleminary study showed that the best organic acids were acetic, ascorbic and propionic. The $\mbox{\ensuremath{\roldsymbol{"}}}$ organic acids were added to the wheat sub samples with different inclusion rates (0.02%, 0.03%, and 0.04%) for propionic acid, (0.04%, 0.05% and 0.06%) for acetic acid, and (1%, 2% and 3%) for ascorbic acid to study the effect on fungal growth and aflatoxins production in stored wheat samples.

With acetic acid at dose of (0.05%) growth of Aspergillus flavus was completely inhibited and no toxins were detected. Ascorbic acid at doses were not enough to inhibited a mold and aflatoxin. The results indicated that wheat grains and its flour can be stored and preserved using propionic and acetic acid. It was recorded a wide range of protein content (10.70 - 11.20%) of flour Propionic and acetic acids at 0.02% and 0.03% concentrations, respectively, had a higher effect on the protein content in wheat flour compared to the control wheat flour. Wet and dry gluten content of wheat flour samples were compatible with its protein content. The results showed that the concentration of 0.05% of acetic acid in wheat flour improved the properties of the bread compared to the bread from other wheat flour

treatments, Thus we recommend the use of the aforementioned dose in conditioninging of wheat before milling to reduce the hazard from mycotoxin to produce healthy bakery products.

Key words: *Aspergillus*, Aflatoxins, Chemical Preservative, Propionate, Acetate, Ascorbic, wheat, Storage.

LIST OF CONTENTS

Serial	Title	Page
1	INTRODUCTION	2
2	REVIEW OF LITERATURE	5
2.1	Wheat grains	5
2.2	Historical view Classification and structure of	5
	wheat	
2.3	The physico-chemical properties of wheat and its	7
	flour	
2.3.1	Wheat	7
2.3.2	Whole wheat flour	9
2.4	Rheological properties of wheat flour	11
2.5	Wheat storage quality and mould infestation	14
2.5.1	Mould infestation	14
2.5.2	Milling process and mycotoxin	15
2.6	Breadmaking	18
2.7	Toast (Pan bread)	20
2.8	Mycotoxin management in wheat and other	23
	cereal based food	
2.9	Physical methods	23
2.10	Chemical methods	23
3	MATERIALS AND METHODS	27
3.1	Materials	27
3.1.1	Wheat	27
3.1.2	Aspergillus flavus NRRL (20521)	27
3.1.3	Chemicals	27
3.2	Method	28
3.2.1	Preparation of samples	28
3.2.2	Experiments	29
3.3	Baking	31
3.4	Analytical methods	32
3.4.1	Chemical method	32
3.4.2	Caloric value	32
3.4.3	Estimation of Aflatoxins content	32
3.4.4	Physical analysis	33

List of Contents

3.4.5	Rheological properties	36
3.4.5.1	Farinograph test	36
3.4.5.2	Alveograph Chopin test	37
3.4.5.3	Mixo lab Chopin	37
3.4.6	Microbiological analysis	37
3.4.7	Sensory evaluation	38
3.4.7.1	Standard toast	38
3.4.7.2	Statistical analyses	38
4	RESULTS AND DISCUSSION	39
4.1	Wheat kernels properties	39
4.1.1	Physical properties of Russian wheat kernels	39
4.1.2	Chemical composition of Russian wheat kernels	42
4.1.3	Fungal count and mycotoxin content of Russian wheat kernels	43
4.1.4	Isolated fungal species from Russian wheat kernels	44
4.2	Physical properties of Russian wheat kernels after 90 days	45
4.3	Effect of milling processes on Russian wheat kernels	46
4.3.1	Isolated fungal species	46
4.3.2	Wheat conditioning	47
4.4.1	Chemical composition of Russian wheat flour	47
	(72% extraction) obtained from nine different	
	conditioningtreatments wheat kernels before storage	
4.4.2	Aflatoxin content of Russain wheat flour (72%	48
	extraction) obtained from nine different conditioningtreatments wheat kernels after milling	
4.4.3	Extraction of different wheat flour obtained from different wheat conditioningtretments	49
4.4.4	Russian wheat flour physicochemical properties (72% extraction) obtained from nine different conditioning treatments of wheat kernels before storage	50
4.4.5	Rheological properties of Russian wheat flour	52

List of Contents

	(72% extraction) obtained from nine different conditioningtreatments of wheat kernels before storage	
4.5	Effect of some organic acids as conditioning additives on the fungal growth and aflatoxins production on wheat grains and it's flour	64
4.5.1	Effect of some organic acids as conditioning additives on the fungal growth and aflatoxins production on wheat grains	64
4.5.2	Effect of some organic acids as conditioning additives on the fungal growth and aflatoxins production in wheat flour	67
4.6	Effect of some organic acids used as conditioningadditives for Russian wheat flour(72% extraction) obtained from nine different conditioningtreatments wheat kernels after storage	72
4.6.1	Chemical composition after storage	72
4.6.2	Physicochemical properties after storage	73
4.6.3	Rheological properties of flour after storage	75
4.6.3.1	Farinographic studies	75
4.6.3.2	alveograph studies	77
4.6.3.3	Mixolab studies	80
4.7	Physical properties of toast made from Russian wheat flour (72% extraction) obtained from nine different conditioningtreatments of wheat kernels after storag	85
4.7.1	Toast	85
4.7.1.1	Making bread	85
4.7.1.2	Bread fraction of toast made from Russian wheat flour (72% extraction) obtained from nine different conditioningtreatments wheat kernels after storage	86
4.7.1.3	Sensory evaluation	88
4.7.1.4	Toast quality	90
5	Summary and Conclusion	93
5.1	Summary	93

List of Contents		
5.1.1.	Evaluation of Russain wheat (imported) for bread making	94
5.1.1.1	Physical properties of wheat kernels	94
5.1.1.2	Chemical composition of wheat kernels	95
5.1.1.3	Physical and chemical properties of different wheat flours	95
5.1.1.4	Rheological properties	95
5.1.2	Quality of imported wheat during storage for 90 days	96
5.1.3	Effect of some organic acid treatment on the fungal growth and aflatoxins production of imported wheat	98
5.1.4	Physical properties of bread making from treatments wheat flour	102
5.2	Conclusion	102
6	REFERENCES	104
7	Arabic Summary	1-8

LIST OF TABLES

Table	Title	Page
1	Toast Formula	31
2	The Sample Grade	34
3	Physical properties of Russian wheat kernels	41
4	Proximate analysis of Russian wheat kernels	42
5	Mycotoxin content of Russian wheat kernels	43
6	Isolated fungal species from Russian wheat kernels	44
7	Physical properties of Russian wheat kernels after	45
	90 days storage at 25°C in Egypt during year 2017	
8	Isolated fungal species from Russian	46
	wheat flour (72% extraction) after milling processing	
9	Chemical composition of Russian wheat flour (72%	48
	extraction) obtained from nine different	
	conditioning treatments wheat kernels before	
	storage	
10	Aflatoxin content of Russian wheat flour (72%	49
	extraction) obtained from nine different	
	conditioning treatment wheat kernels after	
	milling in Egypt during year 2017	
11	Extraction of Russian wheat flours from nine	50
	different conditioning treatments for wheat	
	kernels before storage	
12	Physicochemical properties of Russian wheat flour	51
	((72% extraction) obtained from nine different	
	conditioning treatments of wheat kernels before	
	storage	
13	Rheological properties of Russian wheat flour	62
	(72% extraction) obtained from nine different	
	conditioning treatments of wheat kernels before	
	storage	