

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

Evaluation of wound healing after Angiosomedirected infrapopliteal endovascular angioplasty in critical limb ischemia

Thesis

Submitted for partial fulfilment of MD degree in Vascular Surgery

Presented by Mahetab Mohammed Sayed Shehata M.B.BCh., M.Sc of General Surgery

Supervised by

Prof. Dr. Wageh Fawzy Abdelmalek

Professor of Vascular Surgery Faculty of Medicine, Ain Shams University

Prof.Dr. Abdulrahman Mohamed Ahmed

Assistant Professor of Vascular Surgery Faculty of Medicine, Ain Shams University

Prof.Dr. Amr Nabil Kamel

Assistant Professor of Vascular Surgery Faculty of Medicine, Ain Shams University

Dr. Nader Mohamed Mohamed

Lecturer of Vascular Surgery
Faculty of Medicine, Ain Shams University

Faculty of Medicine – Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Wageh Fawzy Abdelmalak,** Professor of Vascular Surgery, Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof.Dr. Abdulrahman Mohamed Ahmed,** Assistant Professor of Vascular Surgery, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Amr Nabil Kamel**, Lecturer of Vascular Surgery, Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

I wish to introduce my deep respect and thanks to

Dr. Nader Mohamed Mohamed, Lecturer of Vascular Surgery, Faculty of Medicine, Ain Shams University, for his kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mahetab Mohammed Sayed Shehata

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	vi
Introduction	1
Aim of the Work	4
Review of Literature	5
Patients and Methods	96
Results	118
Discussion	139
Summary	156
Conclusion	160
References	161
Arabic Summary	—

List of Tables

Table No.	Title	Page No.
Table (1):	Lesions location and decisional algorithe choice of corresponding angiosome	
Table (2):	Society of Vascular Surgery WIfI threlimb classification (2014):	
Table (3):	Stages of Limb Ischemia	51
Table (4):	Duplex classification of peripheral occlusion disease	•
Table (5):	ASA Classifications:	82
Table (6):	Showing the two groups of the study as percentage:	
Table (7):	Comparison between the two groups study as regard demography and d comorbidities:	ifferent
Table (8):	Comparison between the two study as regard the preprocedural ABI:	
Table (9):	Showing the significance between to study groups as regard clinical corand ulcer anatomical sites:	nplaint
Table (10):	Site of lesion among tibial vessels conto the anatomical site of foot ulcer significance between the two study gr	and its
Table (11):	Type of the arterial lesions and its lescomparison between the two groups study:	of the
Table (12):	Significance of different equipments the two study groups:	
Table (13):	Showing difference between the two groups as regard the procedure duraminutes):	tion (in
Table (14):	Showing incidence of post procomplication between the two study gro	

List of Tables (cont...)

Table No.	Title	Page No.
Table (15):	Comparison between the two study gregard the minor amputation and its occurance:	time of
Table (16):	Comparison between the two study as regard the maintained patency at post operative, first month post opera 6-months post operative, restenosis and the required re-intervention:	$2^{ m nd}$ day tive, at s rates
Table (17):	Comparison between the two groups study as regard the wound healing defin months):	uration
Table (18):	Comparison between the two groups study as regard limb salvage rate:	
Table (19):	Showing difference between two greathers the study as regard the mortality rate.	-
Table (20):	Comparison between our study and international studies:	

List of Figures

Fig. No.	Title Page No).
Figure (1):	Surgical anatomy of common femoral artery	5
Figure (2):	Relation of CFA to inguinal ligaments	6
Figure (3):	Radiological view of CFA during puncture in	
	endovascular interventions	7
Figure (4):	Anatomy of popliteal artery and its branches	9
Figure (5):	Anatomy of trifurcation of popliteal artery	
	showing the three tibial vessels	. 13
Figure (6):	Branches of dorsalis pedis artery sharing in	
	foot arch	16
Figure (7):	Showing pedal arch classification	20
Figure (8):	Anatomical variation and anomalies of	
	popliteal artery and tibial branches	23
Figure (9):	The foot and ankle arterial angiosome is	
	represented as a topographic map divided into	
	five territories, provided by three main arteries	
	and their branches as shown in the right foot	
	(A) and the left foot (B)	25
Figure (10):	Cutaneous angiosome of the right foot (A),	
	cutaneous angiosome model (B), arterial	00
T' (44).	angiogram of the pedal circulation (C)	. 26
Figure (11):	A simplified illustration depicting the	0.7
E: (10):	angiosomes the foot and lower ankle	. 27
Figure (12):	Thrombotic complication of a fibroatheroma seen on a trichrome-stained (thrombus and	
	intraplaque hemorrhage stain red; collagen	
	stains blue) cross-section of artery	33
Figure (13):	Atherosclerotic lesions	
Figure (14):	Initiation and progression of atherosclerotic	00
116010 (14)	plaque	39
Figure (15):	Life cycle of human atherosclerotic plaque	
Figure (16):	Showing tibial TASC classification	
Figure (17):	Ankel Brachial Index	
Figure (18):	Changes in the velocity waveform caused by	- 00
	arterial stenosis	65

List of Figures (cont...)

Fig. No.	Title	Page	No.
Figure (19):	These four images show the geographic di tion of the missing tibial pedal arterio provide a hint of what is possibly still pate	es and	81
Figure (20):	The near-infrared tissue oximeter monit OXY-2	or, the	
Figure (21):	Examples of StO2 foot-mapping		88
Figure (22):	A case (the locations of ulcers were compatible with the angiosome model, but compatible with the StO ₂ foot-mapping)	t were	89
Figure (23):	Showing foot perfusion angiography		
Figure (24):	Antegrade and retrograde CTO crossing		
J	and devices	• • • • • • • • • • • • • • • • • • • •	94
Figure (25):	ADT for tibial access		94
Figure (26):	A pie graph showing the two groups		110
E: (07).	study and their percentage		118
Figure (27):	Comparision between the two study gro regard the gender	•	120
Figure (28):	Comparison between the two study gro regard patients' demography and diffeomorbidities	ferent	121
Figure (29):	Comparison between the two study groregard the outcome similarity to angiosome.	the	124
Figure (30):	Intraoperative angiography showing disposterior tibial artery (PTA), photo (A) st PTA and ATA with stenosed foot arch,	seased tenotic	
Figure (31):	(B) patent PTA, ATA, and foot arch balloon angioplasty	post- seased enotic	128
	ATA, photo (b) patent ATA after cr lesions, post-balloon angioplasty	_	128

List of Figures (cont...)

Fig. No.	Title Pa	ge	No.
Figure (32):	Intraoperative angiography showing diseas anterior tibial artery (ATA), photo (a) stend ATA proximal lesion, photo (b) patent A after crossing lesions, post-balloon angioplas (c) Diseased ATA distal lesion. (d) Patent A after balloon dilatation	tic TA sty. TA	129
Figure (33):	Post big toe amputation wound, post dir angiosomal angioplasty, (a) first week post amputation day 7, (b) four weeks post amputation, (c) six weeks post-amputation	st- st-	133
Figure (34):	Infected ischemic heel wound, (a) p procedural, (b) post direct angiosor angioplasty and surgical debridment by t weeks, (c) follow up at fourth week, (d) foll up, six weeks post-intervention	re- nal wo	
Figure (35):	(a) 3 weeks post-Infected ischemic 4 th wound ATA direct angiosomal angioplasty a 4 th toe amputation, (b) follow up at 6 th week, follow up at 8 th week	toe ind , (c)	134
Figure (36):	Infected ischemic dorsum of foot wound, pre-procedural, (b) post indirect angiosor angioplasty and surgical debridment by months, (c) follow up at 7 months	nal 7 4	134
Figure (37):	Kaplan-Meier curve showing high significant between the two groups as regard wou healing rate (duration in months)	nce ınd	
Figure (38):	Showing comparison between the two ground of the study as regard the wound heal duration (in months):	ing	
Figure (39):	Kaplan-Meier curve showing high significant between the two groups as regard limb salvarates	age	137

List of Abbreviations

Abb.	Full term
<i>AAA</i>	: Abdominal aortic aneurysm
<i>ABI</i>	: Ankle brachial index
<i>AP</i>	: Ankle pressure
<i>ARD</i>	: Acute respiratory distress syndrome
ASA	: American Soceity of Anesthesiology
ASUSH	: Ain Shams University Hospital
<i>BASIL</i>	: Bypass versus angioplasty in severe ischemia of the leg
<i>BMI</i>	: Body mass index
BR	: Binary restenosis
<i>BTK</i>	: Below the knee
<i>CAD</i>	: Coronary artery diagnostic
CFA	: Common femoral artery
<i>CLI</i>	: Critical limb ischemia
Co2	: Carbon dioxide
<i>COPD</i>	: Chronic obstructive pulmonary disease
CTA	: CT angiography
CTO	: Chronic total occlusion
CV	: Cardiovascular
CVA	: Cerebrovascular accident
<i>DCB</i>	: Drug coated balloon
<i>DEBs</i>	: Drug eluting balloons
<i>DIC</i>	: Disseminated intravascular coagulopathy
<i>DM</i>	: Diabetes diseases
<i>DR</i>	: Direct revascularization
<i>DSA</i>	Digital subtraction angiography
<i>ESRD</i>	: End-staged renal disease
FDA	: The food and Drug Administration

List of Abbreviations (Cont...)

Abb. Full term

Gd-DTPA..... : Gadolinium-diethylenetriamine pentaacetic acid *GW.....* : Guide wire HbA1C..... : Glycemic hemoglobin *HTN.....* : Hypertension *I.C.*.... : Intermittent claudication INVEST..... : International Verapmil -sel Transdolapril *IR* : Indirect revascularization *IVC*..... : Inferior vena cava *IVUS.....* : Intravascular ultrasound *LDL* : Low density lipoprotein LDL-C..... : Low density lipoprotein cholesterol *LL.....* : Lower limb *MA*..... : Major amputation *MALE* : Major adverse limb event *MI*..... : Myocardial infarction *MMPs* : Matrix metalloproteinase MRA : Magnetic resonance arteriography MV..... : Mean velocity *NFS* : Nephrogenic systemic fibrosis NHS..... : National Health service *NO* : Nitric oxide *O2C* : Oxygen to see *PA*..... : Popliteal artery *PAD*..... : Peripheral arterial disease PES..... : Paclitaxel eluting stent *PSV.....* : Peak systolic velocity PVR..... : Pulse volume recording

List of Abbreviations (Cont...)

Full term Abb. : Randomized clinical trials RCTs..... REACH..... : Reduction of atherothrobmosis for continued health : Randomized study comparing the Edward RESILIENT..... self-expanding life-stent *SBP.....* : Systolic blood pressure : Superficial Femoral artery *SFA*..... StO2 : Tissue oxygen saturation (StO2) *TASC*..... : The trans-Atlantic Inters Society Consensus

TcPO2....: Transcutaneous oxygen

TER.....: Target extremity revascularization

TIA: Transient ischemic attack
TLR: Target limb revascularization

TP..... : Toe pressure

VCAM1.....: Vascular cell adhesion molecule 1

WD.....: Walking distance

UTWCS...... University of Texas Wound Classification System