

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

Assessment of Balance functions and Primitive Reflexes in Children with Learning Disability

Thesis

Submitted for Partial Fulfillment of the MD Degree in Audiology

Βγ Nancy Metwally Aly M.B., B.CH, M.Sc Audiology

Under Supervision of

Prof. Dr. Nagwa Mohamed Abdel Monem Hazzaa

Professor of Audiology, ENT Department Faculty of Medicine Ain Shams University

Prof. Dr. Amany Ahmed Shalaby

Professor of Audiology, ENT Department Faculty of Medicine Ain Shams University

Prof. Dr. Sahar Mohamed Ahmed Hassanein

Professor of Pediatrics, Pediatrics Department Faculty of Medicine Ain Shams University

Dr. Ahmed Nabil Khattab

Assistant professor of Phoniatrics, ENT Department Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Magwa Mohamed Abdel Monem Hazzaa**, Professor of Audiology, ENT Department, Faculty of Medicine Ain Shams University for her keen guidance, meticulous supervision, valuable instructions and generous help, which made possible the completion of this work.

I am also delighted to express my deep gratitude and respect to **Prof. Dr. Amany Ahmed Shalaby,** Professor of Audiology, ENT Department, Faculty of Medicine Ain Shams University, for her kind care and supervision, fruitful advices, and continuous encouragement and help throughout this work.

I wish to introduce my deep thanks to **Prof. Dr. Sahar**Mohamed Ahmed Hassanein, Professor of Pediatrics, Pediatrics

Department, Faculty of Medicine Ain Shams University, for her continuous help, cooperation and guidance.

I am thankful to **Dr. Ahmed Mabil Khattab**, Assistant professor of Phoniatrics, ENT Department, Faculty of Medicine Ain Shams University, for his kindness, support and cooperation in this work.

Deep thanks and gratitude for **Dr. Fathy Maeem Fatouh** Assistant professor of Audiology, Faculty of Medicine, Ain Shams University, for his great help, sincere effort and valuable advices that guided me all over the way.

I am extremely sincere to My Parents without their efforts, support and encouragement I would never succeed in my entire life.

I would like to thank all my professors and colleagues, for their continuous support and guidance.

Finally, I would like to thank all patients who participated in this work; I couldn't complete this work without them.

Nancy Metwally

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	vi
Introduction and Rationale	1
Aims of the Work	3
Review of Literature	
Learning Disabilities	4
Developmental Reflexes	16
Balance Control In Dyslexia	40
Methodology	56
Results	78
Discussion	108
Conclusions	120
Recommendations	121
Summary	122
References	129
Appendix	151
Arabic Summary	

List of Abbreviations

Abb.	Full term
ADHD	. Attention deficit hyperactivity disorder
APD	. Auditory processing disorder
ARST	. Arabic reading test
ATNR	. Asymmetrical Tonic Neck Reflex
BSA	. British Society of Audiology
CANS	. Central auditory nervous system
CAP	.Central Auditory Processing
CAPD	Central Auditory Processing Disorder
CDP	Computerized dynamic posturography
CNS	. Central nervous system
DLD	Delayed language development
DSM-IV	. Diagnostic and Statistical Manual of Mental disorder 4 th edition
ENT	. Ear, nose and throat
GSI	Grason-Stadler Inc
IPI	. Inter-pulse interval
LD NOS	. Learning Disorders Non-Otherwise Specified
LDs	. Learning Disabilities
LHRR	. Labyrinthine head righting reflex
MADST	. Modified Dyslexia Screening Test
mCTSIB	. Modified Clinical Test for Sensory Interaction and Balance
NICU	Neonatal intensive care unit
OHRR	. Oculo-head righting reflex
PD	. Pitch discrimination

List of Abbreviations Cont...

Abb.	Full term
PPS	. Pitch pattern sequence
PREF	
SLD	Specific Learning Disorders
SOM	Somatosensory
SOT	Sensory organization test
SPIN	Speech in noise test
STNR	Symmetrical tonic neck reflex
TLR	Tonic Labyrinthine Reflex
VCR	. Vestibulocollic reflex
VES	Vestibular
VIS	. Visual
VOR	Vestibulo-ocular reflex
VSR	Vestibulo spinal reflex

List of Tables

Table No.	Title	Page	No.
Table (1):	Age, Gender& Handedness distribute combined and control younger sub grou		79
Table (2):	Age, Gender & Handedness distribution in combined older subgroups & CAPD group	-	80
Table (3):	Complaint distribution in the study gro	oups	80
Table (4):	Dyslexia history results in combined sub §	groups	81
Table (5):	Prenatal, neonatal, postr developmental history of the study grow		81
Table (6):	Central auditory processing question results in the study groups		82
Table (7):	Central auditory test's abnormality is study groups		82
Table (8):	Comparison between combined subgroup& CAPD group as regards tests	CAPD	83
Table (9):	Dyslexia test's abnormality in the consubgroups		84
Table (10):	Comparison between combined and of younger subgroups as regards unilated stance performance timing in seconds	ral leg	86
Table (11):	Comparison between combined and of younger subgroups as regards Ror Fukuda& mCTSIB tests	nberg,	87
Table (12):	Comparison between CAPD group & subgroups of both combined and of groups as regards unilateral leg stance	control	87
Table (13):	Comparison between CAPD group & subgroup of both combined and of groups as regards Romberg, Full mCTSIB tests	control xuda&	88

List of Tables Cont...

Table No.	Title	Page No.
Table (14):	Comparison between combined and younger sub groups as regards equ score & composite score of SOT test	ilibrium
Table (15):	Comparison between combined and younger subgroups as regards analysis of SOT test	sensory
Table (16):	Comparison between CAPD group as subgroups of both combined and group as regards equilibrium secomposite score of SOT test	control ore and
Table (17):	Comparison between CAPD& subgroups of both combined and subgroup as regards sensory analysis test	control s of SOT
Table (18):	Comparison between combined and younger subgroups as regards accuracy, latency& smooth pursuit ga	saccade
Table (19):	Comparison between CAPD group subgroups of both combined and group as regards saccade accuracy, and smooth pursuit gain	control latency
Table (20):	Comparison between combined & younger subgroups as regards tander	
Table (21):	Comparison between CAPD& subgroups of both combined and group as regards tandem gait	control
Table (22):	Percentage of retained primitive ref	
Table (23):	Percentage of underdeveloped rightening reflex (HRR) in the study	

List of Tables Cont...

Table No.	Title	Page	No.
Table (24):	Comparison between group (A) & regards CAPD tests		100
Table (25):	Comparison between group (A) & regards dyslexia tests		101
Table (26):	Comparison between group (A) & regards office tests		103
Table (27):	Comparison between groups (A) & regards equilibrium score& composit of SOT	e score	103
Table (28):	Comparison between group (A) & regards sensory analysis of SOT		104
Table (29):	Comparison between groups (A) & regards saccadic accuracy, latent smooth pursuit gain	y and	104
Table (30):	Comparison between groups (A) & regards tandem gait		105
Table (31):	Correlation between retained preflexes and memory test		106
Table (32):	Correlation between retained preflexes and ARST test		106
Table (33):	Correlation between retained Asymmtonic neck reflex (ATNR) and MDST sense passage reading duration test)	' (non -	106
Table (34):	Correlation between retained labyrinthine reflex (TLR) and tanded test abnormality	em gait	107
Table (35):	Correlation between under develope and Unilateral leg stance test	d HRR	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Flowchart for interventions for learning disorders	_
Figure (2):	Moro Reflex	28
Figure (3):	$Tonic\ Labyrinthine\ Reflex\ (TLR)\$	30
Figure (4):	Asymmetrical Tonic Neck Reflex (AT	NR)31
Figure (5):	Symmetrical Tonic Neck Reflex (STN	R)33
Figure (6):	Landau reflex	34
Figure (7):	Head righting reflexes in the older chead tilts in the opposite	
Figure (8):	Cerebellar anatomy	44
Figure (9):	Comparison of cerebellar right anterbetween control (A) and dyslexic (I scan shows dyslexics exhibiting signs smaller right anterior lobes cerebellum)	B) (MRI dificantly of the
Figure (10):	Sensory organization test	67
Figure (11):	Asymmetrical tonic neck reflex exam	ination 70
Figure (12):	Tonic labyrinthine reflex examination	n71
Figure (13):	Grasp reflex examination	72
Figure (14):	Symmetrical tonic neck reflex examin	nation73
Figure (15):	Landau reflex examination	74
Figure (16):	Head righting reflex examination	75

ABSTRACT

Background: The aim of the study is to assess balance functions, primitive reflexes in children with learning disability

Subjects and Methods: The present study was conducted on 70 children divided into two groups. Control group consists of 20 normal children and study group consists of 50 children with learning disability divided into two subgroups 40 Dyslexic/CAPD (combined) group& 10 CAPD group, age range from 6.5 to9 years. They were subjected to vestibular office test (Romberg, unilateral stance, Fukuda stepping test & mCTSIB), computerized Dynamic posturography, oclumotor test using video goggles (saccade& eye tracking test) and clinical diagnostic tests for primitive reflexes.

Results: Combined group had poor balance measured with unilateral stance and SOT score in condition 4,5,6, composite score, visual and vestibular ratio compared to control group. CAPD showed significant instability in eye closed unilateral leg stance. Oclumotor tests didn't show any significant difference in both sub study groups. 67.5 % of the combined group &70% of the CAPD group have retained primitive reflexes& underdeveloped HRR.

Conclusions: Dyslexic children have poor balance compared to normal children when vision or somatosensory cues are altered or defiant. CAPD children and dyslexics have retained primitive reflexes and underdeveloped posture reflexes indicating poor neurological development. Assessment of balance functions and primitive reflexes should be included within the test battery of CAPD and dyslexics.

Key Words: Dyslexia, CAPD, primitive reflexes, SOT.

INTRODUCTION AND RATIONALE

earning Disabilities (LDs) are neurobiological disorders in **≜**children characterized by an academic functioning that is below the level that would be expected given their age, IQ and grade level in school, and interfere significantly with academic performances or daily life activities that require reading, writing or calculation skills (Margari et al., 2013). In Egypt 16.6% of primary school students are at risk for LD (Ismail et al., 2019). Dyslexia is the most common LD, accounting for at least 80% of all LDs (Kohli et al., 2018).

Dyslexia is characterized by problems with accurate or fluent word recognition, poor decoding, and poor spelling adequate intelligence, motivation, abilities, despite educational opportunities. These difficulties are believed to stem from a deficit in the phonological component of language (Lyon et al., 2003).

In addition to impairment in phonological processing, some studies have noted other rather subtle deficits in motor and perceptual domains. Such as manual finger tasks (Birkett and Talcott, 2012), balance (Stoodley and Schmahmann, 2009), visual vergence (Bucci et al., 2009) and eye movements during reading and motor tasks (Jones et al., 2008; Kronbichler et al., 2009).