

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

Ain Shams University
Faculty of Science
Department of Biochemistry

Assessment of Ionizing Radiation-Induced Bystander Effect in Stem Cells

Thesis Submitted by

Heba Fathy Abass Kenawy El-Komey

(B.Sc. in Biochemistry – Ain Shams University, 2012)

For the Award of the Degree of master of Science
in Biochemistry

Under Supervision of

Prof. Dr. Mohamed Ragaa Mohamed

Professor of Biochemistry & Molecular Biology
Faculty of Science
Ain Shams university

Prof. Dr. Soheir Saad Korraa

Professor of Molecular Biology National Center for Radiation Research and Technology Atomic Energy Authority

Dr. Marwa Galal El-Deen Abdou Hegazy

Associate professor of Biochemistry
Faculty of Science
Ain Shams university

Ain Shams University
Faculty of Science
Biochemistry Department
2020

Ain Shams University

Faculty of Science Biochemistry Department

Biography

Name: Heba Fathy Abbass Kenawy Elkomey

Degree

B.Sc. in Biochemistry

Awarded:

Faculty: Faculty of Science

University: Ain Shams University

Specialty: Biochemistry

Date of

Graduation: June 2012

Grade: Very Good

:

Declaration

I declare that this thesis has been composed by myself and that the work of which it is a record has been done by myself. This thesis has not been submitted for a degree at this or any other university.

Heba Fathy Abbass Kenawy El-Komey

This work is dedicated to my father Dr.Fathy
Abbass El-Komey, my mother Dr.Asmaa
Mohamed, my sisters and my late Grandpa and Grandma.

Thanks are due first and last to Allah by whose grace this work had been completed and by whose grace all my life is arranged in the best. Nobody can imagine this way that had drawn by the mercifulness of Allah.

My deep gratefulness and special thanks to **Prof. Dr.**Mohamed Ragaa Mohamed, Professor of Biochemistry and Molecular Biology, Biochemistry Department, Faculty of Science, Ain Shams University, for his endless help, guidance, continuous encouragement, valuable advice and critism. It is great honor for me to work under his supervision throughout my postgraduate carrier.

It is really difficult for me to find words that can express my deep feelings, heartfull gratitude towards **Prof. Dr. Soheir Saad Korraa**, Professor of Molecular Biology, National Center for Radiation Research and Technology (NCRRT), for her creative thinking, instructive guidance, valuable suggestion, valuable advices, valuable comments and whole hearted support, supervision, kind encouragement, her fruitful reading, reviewing constructive criticizing of the manuscript and kind offer of all

possible laboratory facilities to accomplish the practical part of this study.

Words are also inadequate to express my deepest gratitude to Dr. Marwa Galal El-Deen Abdou Hegazy, Assist. Prof. of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University valuable advice, review the manuscript, unlimited help, kind encouragement, without her tremendous concern and care the performance of this work would be difficult.

It is really difficult for me to find words that can express my deep gratitude and sincere appreciation towards **Dr. Monda Mohamed Maher,** Health Radiation Research Department, NCRRT for her creative thinking, valuable suggestions.

Much thanks to all staff members and colleagues at National Center for Radiation Research and Technology, Atomic Energy Authority, for their sincere support and assistance.

List of contents

Contents	Page
ACKNOWLEDGEMENT	i
LIST OF ABBREVIATIONS	iv
LIST OF TABLES	vii
LIST OF FIGURES	x
ABSTRACT	1
Chapter (I): Introduction and Aim of the Work	
Introduction	3
Aim of the work	5
Chapter (II): Review of Literature	
1.1-Radiation	
1.1.1-Introduction to Radiation	6
1.1.2-Sources of radiation	7

1.1.2.1-Natural Radiation	9
1.1.2.2-Artifical Radiation	10
1.2-Ionizing and Non-Ionizing Radiation	11
1.3-Types of Ionizing Radiation	13
1.3.1-Electromagnetic	13
1.3.2-Particulate	14
1.4-Biological Effects of Radiation	14
1.4.1-Radiation Induced Damage	16
1.4.2-Radiation Induced Bystander Effect	20
1.4.2.1-Adaptive Response	26
1.4.2.2-Genomic Instability	29
1.4.2.3-Abscopal Effect	29
1.4.3-Radiation Induced Apoptosis	30
1.5-Nerve Growth Factor	32
1.6-Glial Fibrillary Acidic Protein	34
1.7-Stromal Cell-Derived Factor-1	37
Chapter (III): Materials & Methods	
2.1-Materials	40
2.1.1-Experimental Animals	40
2.1.2-Radiation process and Laboratory Facilities	41

2.1.3-Chemical and Kits	41
2.1.4-Experimental design	42
2.1.5-Samples collection and preparation	43
2.2-Methods	44
2.2.1-Measurement of oxidative stress markers	45
2.2.1.1-Determination of bone marrow and muscle	45
femur lipid peroxidation (LPO) concentration	
2.2.1.2-Level of Total Antioxidant Capacity in bone	
marrow femur	49
2.2.2- Measurement of mRNA genes expression levels:	
2.2.2.1-Extraction of total RNA from bone marrow	
femur	51
2.2.2.2-First Strand cDNA synthesis	54
2.2.2.3-Quantitative Real Time Polymerase Chain	
Reaction (qRT-PCR)	57
2.2.3-Microneucleui Assay (Acridine Orange Staining	62
Duo and duna)	
Procedure)	
2.2.4-Statistical Analysis	64

Chapter (IV): Results	65
Chapter (V): Discussion	112
Chapter (VI): Conclusion	125
Chapter (VII): Summary	126
Chapter (VIII): References	130
ARABIC ABSTRACT	١
ARABIC SUMMARY	٣

AEA	Atomic Energy Authority
AP-endonuclease	Apurinic/apyrimidinic (AP) endonuclease
BDNF	Brain-derived Neurotrophic Fact
BMC	Bone Marrow Cells
BMSCs	Bone marrow Mesenchymal Stem Cells
cDNA	Complementary DNA
CNS	Central Nervous system
CXCR4	Chemotaxis Cytokine Receptor-4
DSBs	Double-Strand Breaks
fMNPCEs	Frequency of Micronucleated Polychromatic Erythrocytes
GAPDH	Glyceraldehyde-3-Phosphate Dehydrogenase
GFAP	Glial Fibrillary Acidic Protein
GPx	Glutathione Peroxidase
GR	Glutathione Reductase
GSH	Glutathione
H_2O_2	Hydrogen Peroxide
HCl	Hydrochloric Acid