

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

Ain Shams University Faculty of Engineering Mechanical Power Engineering Department

Improving the performance of rolling printing machine by monitoring and analyzing mechatronics systems

A Thesis Submitted in Partial Fulfillment for the Requirements of the degree of master of science in mechanical Engineering

by Haitham Abdel Monem Mostafa Badr An engineer in the armed forces

Mohammed Abu Al-Aneen Al-Samnoudi
Professor
Mech. Power Engineering Dept.
Ain Shams University

Muhammad Ali Metwally
Assistant Professor
Mech. Power Engineering Dept.
the Military Technical College

Curriculum Vitae

Name : Haitham Abdel Monem Mostafa Badr

Brith date : 29/4/1983

Degree :Bachelor's degree in Mechanical Engineering for

the year 2005 from the Military Technical College

Current job: An engineer in the armed forces

Statement

This thesis is submitted in fractional satisfaction for the degree

of master of science in mechanical power engineering to the

faculty of engineering ain shams university.

The work remembered for this postulation was completed by

the creatorprimarily at the laboratories of the mechanical power

department faculty of engineering ain shams university .

no piece of this thesis has been submitted for a degree or

capability at some other college .

Signature

Haitham Abdel Monem Mostafa Badr

Date: / /

-IV-

Board of supervisors

The undersigned certify that they have read and recommended to the faculty of engineering ain shams university for acceptance a thesis entitled (Improving the performance of rolling printing machine by monitoring and analyzing mechatronics systems) submitted by Haitham Abdel Monem Mostafa Badr in fractional satisfaction for the necessities of the degree of master of science in mechanical engineering.

Supervisory Board:

- 1-Prof / Muhammad Abu Al-Enin Mahmoud Al-Samnoudi Department of power mechanical engineering Engineering Faculty, The university of Aen Shams
- 2- Assistant Professor / Mohamed Ali Metwally Department of power mechanical engineering Military Technical College

Examiners committee

the undersigned certify that they have read and recommended to the faculty of engineering ain shams university for acceptance a thesis entitled (Improving the performance of rolling printing machine by monitoring and analyzing mechatronics systems) submitted by Haitham Abdel Monem Mostafa Badr in fractional satisfaction for the necessities of the degree of master of science in mechanical engineering.

Supervisory Board:

1-Prof / Ibrahim Saleh Mustafa	(,
2-Prof / George Nubar Simonyan	()
3-Prof / Muhammad Abu Al-Enin Mahmoud Al-Samnoud	i ()
4-Assistant Professor / Mohamed Ali Metwally	<i>,</i> ()

Date 3\3\2021

ABStRACT

The research is directed towards the work of modification and development of the poster printing machines that operate with Inkjet by increasing the speed of the poster printing machine without prejudice to the required print quality, which is the main factor in the market Because the quality of printing is the basis for the customer's drive and speed is an important factor for the printing organization in order to save time and provide the largest quantity of production with the highest quality, and through it. it will return to the printing establishment by several factors, namely:

1- Save time by producing the largest quantity in the least time.

2- Providing manpower for the printing establishment.

3- Providing the additional requirements to save electricity and other factors.

The purpose of this analysis effect of pressure inside the ink tanks on increasing the print accuracy (print quality) with the printer head steady. Also to find what is the permissible critical range for increasing the pressure that will increase the speed of printing with permissible accuracy this phenomenon will be validated by:

1-Mathematical Model (Droplet Formation Model - Nozzle Dynamics Model) .

2- Coupling of Nozzle Dynamics and Droplet Formation.

3- prediction by CFD modelling.

4- Influence Of Pressure And Media Speed On Printing Quality.

It is possible to increase the production process for banner printing by fixing the machine speed at 5 m/h and increasing the pressure with a maximum of 0.38 bar because after that there was a clear defect in the printing process.

It can save time and increase production without compromising the

quality of the printed product.

The prediction by CFD modelling was adequately able to predict the formation and development of an ink droplet ejected from the printhead of an inkjet printer.

Relationship between the different effect of pressure and the variable speed of the print head and their relationship to the print quality.

And we also find that it is possible to reach the maximum degree of printing accuracy after controlling the pressure and speed of the print head.

keywords:

poster printing machines- Inkjet - print quality - Printing heads - Continuous inkjet - Drop-on-demand .

Acknowledgment

I might want to offer my thanks to my scholarly advisorsProf/ Muhammad Abu Al-Enin Mahmoud Al-Samnoudi and Assistant Professor/Mohamed Ali Metwally for their direction and inspiration during this examination.

Iwould like to thank all the members of the renewable energy system simulation lab, I would like to express the deepest appreciation to my committee members for their inspirational instruction and guidance suppoeted by an engagement in comparative lierature and modern twchnology without thier guidance and persistent help icouldnot complete this dissertation.

Finally i sincerely thank my wife and my family and especially my parents deserve all the encouragement in carrying cut this work.

CONTENTS

Curriculum Vitae	II
Statement	
Board of supervisors	
Examiners committee	VI
Abstract	
Acknowledgment	
contents	
LIST OF fIGUES	
	7 1 1
CHAPTER 1.INTRODUCTION	1
1-1:Printing Innovations	1
1-2:Meaning of the Most Significant Terms Connection to	•
Printing Innovation	1
1-3:Print Quality (Shading/Shading Hypothesis)	_
1-4:Color Picture St ructure (Shading Generation)	37
1-5:Color Partition	
1-6: The Shading Dark	
1-7 : Halftone Screening	
1-8 : Screening of Shading Divisions	
1-9 : Speck Shapes	66
1-10 :Advanced Screening	73
Chapter 2. Literature review	0.1
2.1 Introduction	81
2.2 The effect of ink pressure on printing units	83
2.3 The effect of ink pressure on printing units	84
2.4 Previous st udes	84
2.5 The Thesis Objectives	
2.5 The Thesis Objectives	95
Chapter3. Numerical Analysis Of ink Dropplet Formation	98
3.2 Mathematical Model	
3.2.1 Droplet Formation Model	100
3.2.2 Nozzle Dynamics Model	100
3-2-3: Dynamic model results and discussion	102
3.2.4 Coupling of Nozzle Dynamics and Droplet Formation.	
3.2.5 : Numerical analysis results and discussion	

3.3 Simulation of print head nozzle droplet	110
3-3-1:Introduction	110
3-3-2:computational domain set up	110
3-3-3 Drop ejection without effect of pressure	113
3-3-4 Drop ejection with effect of pressure	114
3-3-5: Fluid flow model result discussion	121
Chapter 4. Influence Of PressureAndMedia Speed On Printing	
Quality	123
4.1. Introduction	125
4.2:experiment work	129
4-2-1:The fir st experimnt	130
4-2-1:The second experience	132
4-2-3:The third experience	136
Chapter 5. Conclusions & Recommendations for Future Work	143
5.1. Conclusions	147
5.2. Recommendations for Future Work	148
References	149
appendix (a)	161

LISt OF FIGURES

fig(1.1) Creation stream (work process), material and information	
stream for the creation of printed itemsStatement	6
Fig.(1-2) Print innovations and creation st ream for multicolored printed	
item	7
Fig (1.3) Synchronous complexity. Case of the visible view of a	
shading change in an indistinguishable dark tone because of the	
encompassing hue	10
Fig.(1.4) Added sub st ance shading blending of the fundamental	
hues red, green, blue	12
Fig. (1.5) Square graph/model for shading observation and the	
colorimetric depiction of hues	13
Fig. (1.6) Noticeable range in the range of electromagnetic waves	
Fig. (1.7) Autotypical multicolor printing (infinitesimal photograph	
of a print image section)	13
Fig. (1.8) Radiation dissemination of the perfect dark body	15
Fig. (1.9) St andard shading coordinating capacities	19
Fig.(1.12)CIELUVshadingspace	19
Fig. (1.13) CIE LAB shading space (cross area of the shading	23
Fig. (1.14) CIELAB shading circle	23
Fig. (1.15) CIELAB shading st rong	28
Fig. (1.16) CIELAB shading circle with chromatic worth C* and	
tone point h*	28
Fig.(1.17) Otherworldly force conveyance as a "unique mark" on	
the case of two hues An and B (at the equivalent optical thickness	29
Fig. (1.18) Essential st ructure of a shading e st imating gadget	29
Fig. (1.19) Estimation of shading thickness (optical thickness) by	31
densitometry (estimation strategy)	31
Fig. (1.20) Spectrometer principles for measuring spectral reflectance factors	36
Fig. (1.21) Photoelectric colorimeter; optical separating with tri st imulus channels	36
Fig. (1.22) Shading extents in the CIELAB framework for various propagation forms.	38
Fig. (1.23) Auto run of the mill multi color printing.	44

Fig. (1.23) Shading detachments and overprinting for proliferation	
in four-shading counterbalance printing	45
Fig. (1.25) Unearthly circulation	48
Fig. (1-26) Shading areas of essential hues	48
Fig. (1.27) Phantom dispersion	52
Fig. (1.28) Commonplace instances of shading estimation patches	53
Fig. (1.29) Instances of deciding the shading division for dark	55
Fig. (1.30) Perceivability of streak assembly for the visible	
impression of natural eye in typical perception separation	64
Fig. (1.31) Obstruction impact	65
Fig. (1.32) Rosette development in screened multi color print.	65
Fig. (1.33) Continuous-tone output	68
Fig.(1.34) Correlation of AM screening and FM	68
Fig. (1.35) Detail of a shading photo (contone)	69
Fig.(1.36) Spatial tone esteem degree	69
Fig.(1.37) Crossover screening: a mix of AM and FM screening	71
Fig. (1.38) Speck st ructures for the propagation of tone e st eems	72
Fig. (1.39) Optical thickness regulation by changing the ink	
film thickness	72
Fig. (1.40) Advanced spot st ructure	75
Fig. (1.41) Computerized screen st ructure	78
Fig. (1.42) Correlation of plentifulness adjusted (AM) screening	
with recurrence balanced (FM) screening	78
fig(1.43) Connection between's screen administering, addressability and dim	
qualities on account of computerized screening and picture st ructure	79
Fig. (3.1) uniform mesh of droplet formation.	
Fig. (3.2) Schematic of droplet breakup	105
Fig. (3.3) Relationship between point size and pressure	105
Fig. (3.4) St rategy of droplet combination	106
Fig. (3.5) Point shape during formation with different pressure	107
Fig. (3.6) The effect of the ink point shape with time	109