

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Irrigation and Hydraulics Department

Sustainable Groundwater Management for New Reclamation Areas in Egypt

A Thesis Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Civil Engineering (Irrigation and Hydraulics)

By

Yahya Mohamed Abdelwahab Ragab Elmansy

Master of Science in Civil Engineering
(Irrigation and Hydraulics)

Faculty of Engineering, Ain Shams University, 2005

Supervised By

Prof. Dr. Ahmed Ali Ali Hassan

Professor of Environmental Hydrology, Faculty of Engineering, Ain Shams University, Cairo, Egypt

Dr. Peter Hany Sobhy Riad

Associate Professor, Irrigation & Hydraulics Dept., Faculty of Engineering, Ain Shams University, Cairo, Egypt

Prof. Dr. Mahmoud Samy AbdelSalam

Professor of Hydraulics, Faculty of Engineering, Ain Shams University, Cairo, Egypt

Prof. Dr. Abdel_Ghany Mohamed Abdel_Ghany El_Gindy

Professor of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, Cairo, Egypt

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Irrigation and Hydraulics Department

Sustainable Groundwater Management for New Reclamation Areas in Egypt

By Yahya Mohamed Abdelwahab Ragab Elmansy

Master of Science in Civil Engineering (Irrigation and Hydraulics) Faculty of Engineering, Ain Shams University, 2005

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Farouk Abd Allah Saad El-Fitiany	
Professor of Irrigation & Drainage Engineering,	
Faculty of Engineering,	
Alexandria University, Alexandria, Egypt	
Prof. Dr. Hoda Kamal Fouad Soussa	
Professor of Water Resources Engineering,	
Faculty of Engineering,	
Ain Shams University, Cairo, Egypt	
Prof. Dr. Ahmed Ali Ali Hassan	
Professor of Environmental Hydrology,	
Faculty of Engineering,	
Ain Shams University, Cairo, Egypt	
Dr. Peter Hany Sobhy Riad	
Associate Professor, Irrigation & Hydraulics Dept.,	
Faculty of Engineering,	
Ain Shams University, Cairo, Egypt	

Statement

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Civil Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Yahya Mohamed Abdelwahab Ragab Elmansy

Sig	gnature	
•••••		 •••••

Date:25 March 2021

Dedication

It is a great pleasure to dedicate my

Ph.D. Thesis

To the most persons I love in my life;

My Parents,

My Wife "Marwa",

My Children "Fayrouz, Omar, Hamza, and Ali", and My Family.

To all of them my deepest gratitude

Researcher Data

Name : Yahya Mohamed Abdelwahab Ragab Elmansy

Date of birth : 23rd June 1979

Place of birth : Cairo - Egypt

Last academic degree : Master of Science in Civil Engineering

Field of specialization : Irrigation and Hydraulics

University issued the degree : Ain Shams University

Date of issued degree : 24th September 2005

Current job : Assistant Lecturer, Civil Engineering Dept.,

Faculty of Engineering,

The British University in Egypt

Abstract

Sustainable Groundwater Management for New Reclamation Areas in Egypt Egypt's agricultural land is very limited with respect to its population food demand. This leads Egypt to be a heavily dependent on imported food products. To fulfil the expanding demand of agricultural products, successive governments have initiated many land reclamation projects since 1930s. In 2014, the Egyptian government initiated an ambitious horizontal expansion plan through reclamation of about 1.5 million feddans (1 feddan = 4200.83 m²) as part of sustainable economic development aligned with Egypt's vision towards 2030. The majority of this project areas depend on groundwater as the only source of irrigation water. There is a great concern about groundwater sustainability which considered the main challenge to this project.

The Western Desert of Egypt is one of the main regions of the 1.5 million feddan project, including oases and southern area. These oases are characterized by artesian wells with high flow rate of fresh water which extracted from the Nubian Sandstone Aquifer (NSA), a huge nonrenewable aquifer. It stores about 150,000 BCM (km³) and it is considered the main water source for this region.

Intensive well-drilling process in NSA area has been going on since 2014. This may result in developing huge drawdown around the well fields which leads to lowering the groundwater potentiometric (piezometric) level (GWL_{potent.}) and occurrence of undesirable consequences. It is extremely important to sustainably manage groundwater extraction from this aquifer. Sustainable extraction rates and the most beneficial sustainable extraction rate have to be determined.

However, safe yield concept, outflow equals inflow, is not applicable for NSA. Sustainable groundwater management definition for nonrenewable aquifers is not

unique because compromising between benefits of groundwater exploitation and its negative side effects is different from case to another. Hence, groundwater sustainability assessment and management criteria are determined on case by case basis.

A new groundwater-dependent reclaimed area of 10,000 feddan in Sahl Baraka, Farafra oasis, was taken as a case study area. For the study area, the Egyptian Government, represented by the Ministry of Water Resources and Irrigation (MWRI), set the limits of the adopted sustainable groundwater management criteria. These limits depend on two factors of the same weight. The first factor is the range of the economic lifting depth (Economic $D_{lifting}$) (set to be ≤ 40 m beneath the land level (LL) at well location). The second factor is the duration during which the lifting depth ($D_{lifting}$) becomes not economic (set to be at least 100 years). Lifting depth ($D_{lifting}$) could be defined as the distance between the land level (LL) and the groundwater potentiometric level (GWL_{potent.}) at the well, including the Depression Cone Drawdown (DD_{well}).

GIS functions were used to develop the initial groundwater potentiometric map. 3-D MODFLOW model, for the study area, was constructed, calibrated, and run to obtain the Depression Cone Drawdown (DD_{well}) associated with different extraction rates. All NSA regional drawdown rates at Farafra oasis were considered. Methodologies for duration and lifting depth sustainability assessment, using Benefit-Deficit analysis, have been developed and applied. Also, methodology for determination of the most beneficial sustainable extraction rate has been developed and applied.

Groundwater sustainability for extraction rates $Q_{well} = 1000$, 2000, 2500, 3000, 4000, and 5000 m³/day have been assessed, according to the MWRI adopted sustainability criteria. It could be concluded that all considered extraction rates