

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Stone Heterogeneity Index as a New Parameter for Prediction of Shockwave Lithotripsy Outcomes

Thesis

Submitted for Partial Fulfilment of Doctorate Degree in Urology

By

Abd El Rahman Hossam Mahmoud Nasef Master Degree in Urology, Ain Shams University

Under Supervision of

Prof. Abd El Fattah Mohammed Aggour

Professor of Urology Faculty of Medicine Ain Shams University

Prof. Hisham El Shawaf

Professor of Urology Faculty of Medicine Ain Shams University

Dr. Kareem Omar

Assistant Professor of Urology Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University

2021

Ouran-HD.com | μαο κάτιο

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof.** Abd El Fattah Mohammed Aggour, Professor of Urology - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Wisham & Shawaf**, Professor of Urology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Kareem Omar,** Assistant Professor of Urology, Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Abd El Rahman Hossam Mahmoud Nasef

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	5
Aim of the Work	8
Review of Literature	
Physics of Lithotripsy	9
Clinical Parameters that Affects Outcome of ESV	<i>N</i> L26
Renal Stone Composition	38
Patients and Methods	51
Results	58
Discussion	72
Summary and Conclusion	81
References	83
Arabic Summary	

Tist of Tables

Table No.	Title	Page	No.
Table (1):	Summary of existing theories for	stone	
	fragmentation		23
Table (2):	Review of literature on the relation	nship	
	between MSD and ESWL outcomes		30
Table (3):	Measuring method of mean stone de	-	
	in previous studies		31
Table (4):	Review of the literature on the relation	-	
	between skin-to-stone distance and		
	wave lithotripsy outcomes		36
Table (5):	Metabolic and environmental abnorm		
	associated with nephrolithiasis		44
Table (6):	Stone composition and relative occurr		46
Table (7):	ESWL outcome according to demogration	-	
	data		58
Table (8):	Stone site		59
Table (9):	ESWL success according to		
	characteristics		
Table (10):	Outcome of ESWL		
Table (11):	ESWL success according to ESWL sessi		
Table (12):	Relationship between SHI and		
	clinical parameters		66
Table (13):	Correlation between SHI and	other	
	parameters		69
Table (14):	Comparison of ESWL sessions and nu		
	of shocks according to stone size		70
Table (15):	Comparison of stone heterogeneity		
	between success and failure ou		
	according to stone size		70
Table (16):	Comparison of stone heterogeneity		
	between success and failure ou		
	according to Mean stone density		71

Tist of Figures

Fig. No.	Title Page	No.
Figure (1):	Pressure variation measured as a lithotripter shock wave propagates	0
Figure (2):	through matter. Calculated spatial distribution of the peak positive pressure for the Dornier HM3 lithotripter.	
Figure (3):	Focusing design of a Dornier HM3 electrohydraulic lithotripter	
Figure (4):	Schematic of an electrohydraulic lithotripter showing a patient on the treatment table during ESWL	
Figure (5):	Piezoelectric shock wave generator showing a large number of crystals mounted on a hemispherical aluminium	
	backing.	13
Figure (6):	Electromagnetic shockwave generators	15
Figure (7):	The three types of shock wave sources produce different focal zones and different	
(-)	peak pressure	
Figure (8):	Respiratory motion causes stone displacement	
Figure (9):	Schematic of most important shock wave comminution mechanisms during	
Figure (10):	extracorporeal lithotripsy	
T. (11)	as a tensile wave at the distal surface of the stone	21
Figure (11):	Schematic of shock wave energy concentration showing that in front of and behind the kidney stone, unneeded shock wave energy is deposited into renal tissue.	24
	ussue	

Tist of Figures (Cont...)

Fig. No.	Title Page	No.
Figure (12):	Two techniques used to measure MSD	
	(abdominal window)	32
Figure (13):	Measurement of stone heterogeneity	7
	index (SHI) on axial images of non-	-
	contrast computed tomography (NCCT)	35
Figure (14):	Shock waves to comminution for various	;
	types of human kidney stones in vitro	41
Figure (15):	Photographic and helical computed	
	tomography images show structural	<u>[</u>
	variability in stones of the same type	43
Figure (16):	ESWL success according to stone size	60
Figure (17):	ESWL success according to MSD	60
Figure (18):	ESWL success according to SHI	61
Figure (19):	ROC curve for SHI (SD) (HU) as a	L
G	predictor of failure outcome	61
Figure (20):	Outcome of ESWL	
Figure (21):	Outcome according to ESWL sessions	65
Figure (22):	Relationship between SHI and gender	
Figure (23):	Relationship between SHI and number of	
	ESWL sessions	
Figure (24):	Relationship between SHI and one-	
3 ` ′	session success	
Figure (25):	Relationship between SHI and two-	
3 . ,	session success	
Figure (26):	Relationship between SHI and outcome	69

Tist of Abbreviations

Abb.	Full term
ATTA	.American Urological Association
	e e
	$. Complete\ blood\ count$
<i>CT</i>	.Computed tomography
<i>DECT</i>	.Dual–energy CT
<i>EAU</i>	$. European \ Association \ of \ Urology$
<i>EHLs</i>	$. Electro hydraulic\ lithotrip ter$
<i>ESWL</i>	$. Extracorporeal\ shock wave\ lithotrips y$
HM3	.Dornier human model 3
HU	. Hounsfield unit
HUs	. Hounsfield units
<i>IEC</i>	$. International\ electrotechnical\ commission$
<i>IQR</i>	.Inter-quartile range
<i>MPA</i>	. Me gapa scals
MSD	.Mean stone density
NCCT	$. Non-contrast\ computed\ tomography$
PUJ	.Pelvi-ureteric junction
ROI	. Region of interest
SHI	.Stone heterogeneity index
SPSS	. Statistical Package for Social Science
SSD	.Skin-to stone distance
SWL	.Shock wave lithotripsy
URS	$. \ Ure teroscopic\ lithotrips y$
VCSD	. Variation coefficient of stone density

Introduction

xtracorporeal shock wave lithotripsy (SWL) is the most common mode of therapy for small renal and ureteral stones. Stones are first disintegrated by shock waves, and then fragments are spontaneously cleared from the urinary tract. Several stone characteristics including stone size, mean stone density (MSD) and skin to stone distance (SSD) have been suggested to optimize and predict SWL outcomes (El-Nahas et al., 2007).

Examining stone fragility is important to identify patients who will benefit from SWL and avoiding unnecessary exposure of the renal parenchyma to shock waves as well. Failure of stone disintegration results in the requirement of an alternative treatment procedure which increases medical costs (Andrabi et al., 2015).

Mean Stone Density (MSD) has been widely used during the last decade as an important parameter to characterize urinary stones susceptibility to SWL for both research and practice. often clinical However, comprise stones combination of crystals and MSD is only an arithmetical average that cannot represent the heterogeneity of stone composition (Park et al., 2014).

MSD is the mean value of the Hounsfield units (HUs). Hounsfield units (HUs) can be measured on the magnified axial

non-contrast computed tomography (NCCT) images from the point of the largest stone diameter whereby an imaginary elliptical region of interest drawn incorporating the largest cross sectional area of the stone. Additionally, NCCT can provide other pixel statistics such as the minimum, maximum and standard deviation of HU values (Tanaka et al., 2013).

As the composition of urinary stones can vary even though they have a similar MSD, Lee et al., postulated that a heterogeneous stone may be more fragile than a homogenous stone and therefore identification of such stones prior to SWL can predict favorable results. Lee et al., study defined stone heterogeneity index (SHI) as the standard deviation of stone density on NCCT that can be a novel predictor for SWL outcomes. SHI was independently associated with SWL success in patients with urinary calculi, thus SHI can be a useful clinical parameter for stone fragility (Lee et al., 2016).

The relationship between stone compositions and density of stone has been accomplished by in vitro studies showing uric acid calculi (easily fragmented with SWL) having the least density (112-436HU) and calcium oxalate monohydrate (often refractory to SWL) having the highest density (1743-2857HU) (Rabani and Moosavizadeh, 2012).

However, further prospective studies are needed to confirm the observation on the relationship between SHI and SWL outcomes to determine a clinically applicable cut-off

value of SHI for the selection of proper SWL candidates. SHI will play a promising role when determining a treatment modality in patients with a urinary stone and especially when selecting the proper SWL candidates from the patients with a stone of large size or high MSD (Lee et al., 2016).

AIM OF THE WORK

The aim of this work is to introduce the concept of stone heterogeneity index (SHI) as the standard deviation of stone density on non-contrast computed tomography and investigate whether SHI can be a predictor for SWL outcomes.